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Abstract. In this paper, we discuss the theory of the Siegel modular
variety in the aspects of arithmetic and geometry. This article covers the
theory of Siegel modular forms, the Hecke theory, a lifting of elliptic cusp
forms, geometric properties of the Siegel modular variety, (hypothetical)
motives attached to Siegel modular forms.
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1. Introduction

For a given fixed positive integer g, we let

Hg = {Ω ∈ C(g,g) | Ω = tΩ, Im Ω > 0 }
be the Siegel upper half plane of degree g and let

Sp(g,R) = {M ∈ R(2g,2g) | tMJgM = Jg }

be the symplectic group of degree g, where F (k,l) denotes the set of all k × l
matrices with entries in a commutative ring F for two positive integers k and
l, tM denotes the transposed matrix of a matrix M and

Jg =
(

0 Ig
−Ig 0

)
.

Then Sp(g,R) acts on Hg transitively by

(1.1) M · Ω = (AΩ +B)(CΩ +D)−1,

where M =
(
A B
C D

)
∈ Sp(g,R) and Ω ∈ Hg. Let

Γg = Sp(g,Z) =
{(

A B
C D

)
∈ Sp(g,R)

∣∣ A,B,C,D integral
}

be the Siegel modular group of degree g. This group acts on Hg properly
discontinuously. C. L. Siegel investigated the geometry of Hg and automorphic
forms on Hg systematically. Siegel [131] found a fundamental domain Fg for
Γg\Hg and described it explicitly. Moreover he calculated the volume of Fg.
We also refer to [65], [92], [131] for some details on Fg. Siegel’s fundamental
domain is now called the Siegel modular variety and is usually denoted by Ag.
In fact, Ag is one of the important arithmetic varieties in the sense that it is
regarded as the moduli of principally polarized abelian varieties of dimension
g. Suggested by Siegel, I. Satake [117] found a canonical compactification, now
called the Satake compactification of Ag. Thereafter W. Baily [6] proved that
the Satake compactification of Ag is a normal projective variety. This work was
generalized to bounded symmetric domains by W. Baily and A. Borel [7] around
the 1960s. Some years later a theory of smooth compactification of bounded
symmetric domains was developed by Mumford school [5]. G. Faltings and C.-
L. Chai [30] investigated the moduli of abelian varieties over the integers and
could give the analogue of the Eichler-Shimura theorem that expresses Siegel
modular forms in terms of the cohomology of local systems on Ag. I want to
emphasize that Siegel modular forms play an important role in the theory of
the arithmetic and the geometry of the Siegel modular variety Ag.

The aim of this paper is to discuss a theory of the Siegel modular variety in
the aspects of arithmetic and geometry. Unfortunately two important subjects,
which are the theory of harmonic analysis on the Siegel modular variety, and
the Galois representations associated to Siegel modular forms are not covered
in this article. These two topics shall be discussed in the near future in the
separate papers. This article is organized as follows. In Section 2, we review the
results of Siegel and Maass on invariant metrics and their Laplacians on Hg. In
Section 3, we investigate differential operators on Hg invariant under the action
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(1.1). In Section 4, we review Siegel’s fundamental domain Fg and expound
the spectral theory of the abelian variety AΩ associated to an element Ω of Fg.
In Section 5, we review some properties of vector valued Siegel modular forms,
and also discuss construction of Siegel modular forms and singular modular
forms. In Section 6, we review the structure of the Hecke algebra of the group
GSp(g,Q) of symplectic similitudes and investigate the action of the Hecke
algebra on Siegel modular forms. In Section 7, we briefly illustrate the basic
notion of Jacobi forms which are needed in the next section. We also give a
short historical survey on the theory of Jacobi forms. In Section 8, we deal with
a lifting of elliptic cusp forms to Siegel modular forms and give some recent
results on the lifts obtained by some people. A lifting of modular forms plays
an important role arithmetically and geometrically. One of the interesting
lifts is the so-called Duke-Imamoǧlu-Ikeda lift. We discuss this lift in some
detail. In Section 9, we give a short survey of toroidal compactifications of the
Siegel modular variety Ag and illustrate a relationship between Siegel modular
forms and holomorphic differential forms on Ag. Siegel modular forms related
to holomorphic differential forms on Ag play an important role in studying the
geometry of Ag. In Section 10, We investigate the geometry of subvarieties of
the Siegel modular variety. Recently Grushevsky and Lehavi [45] announced
that they proved that the Siegel modular variety A6 of genus 6 is of general
type after constructing a series of new effective geometric divisors on Ag. Before
2005 it had been known that Ag is of general type for g ≥ 7. In fact, in 1983
Mumford [102] proved that Ag is of general type for g ≥ 7. Nearly past twenty
years nobody had known whether A6 is of general type or not. In Section 11, we
formulate the proportionality theorem for an automorphic vector bundle on the
Siegel modular variety following the work of Mumford (cf. [101]). In Section 12,
we explain roughly Yoshida’s interesting results about the fundamental periods
of a motive attached to a Siegel modular form. These results are closely related
to Deligne’s conjecture about critical values of an L-function of a motive and
the (pure or mixed) Hodge theory.

Finally I would like to give my hearty thanks to Hiroyuki Yoshida for ex-
plaining his important work kindly and sending two references [162, 163] to
me.
Notations: We denote by Q, R and C the field of rational numbers, the field
of real numbers and the field of complex numbers respectively. We denote by
Z and Z+ the ring of integers and the set of all positive integers respectively.
The symbol “:=” means that the expression on the right is the definition of
that on the left. For two positive integers k and l, F (k,l) denotes the set of
all k × l matrices with entries in a commutative ring F . For a square matrix
A ∈ F (k,k) of degree k, σ(A) denotes the trace of A. For any M ∈ F (k,l), tM
denotes the transposed matrix of M . In denotes the identity matrix of degree
n. For A ∈ F (k,l) and B ∈ F (k,k), we set B[A] = tABA. For a complex matrix
A, A denotes the complex conjugate of A. For A ∈ C(k,l) and B ∈ C(k,k), we
use the abbreviation B{A} = tABA. For a number field F , we denote by AF

the ring of adeles of F . If F = Q, the subscript will be omitted. We denote
by AF,f and Af the finite part of AF and A respectively. By Q we mean the
algebraic closure of Q in C.
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2. Invariant Metrics and Laplacians on Siegel Space

For Ω = (ωij) ∈ Hg, we write Ω = X + iY with X = (xij), Y = (yij) real
and dΩ = (dωij). We also put

∂

∂Ω
=
(

1 + δij
2

∂

∂ωij

)
and

∂

∂Ω
=
(

1 + δij
2

∂

∂ωij

)
.

C. L. Siegel [131] introduced the symplectic metric ds2 on Hg invariant under
the action (1.1) of Sp(g,R) given by

(2.1) ds2 = σ(Y −1dΩY −1dΩ)

and H. Maass [91] proved that its Laplacian is given by

(2.2) ∆ = 4σ
(
Y t

(
Y
∂

∂Ω

)
∂

∂Ω

)
.

And

(2.3) dvg(Ω) = (detY )−(g+1)
∏

1≤i≤j≤g

dxij

∏
1≤i≤j≤g

dyij

is a Sp(g,R)-invariant volume element on Hg (cf. [133], p. 130).

Theorem 2.1. (Siegel [131]). (1) There exists exactly one geodesic joining
two arbitrary points Ω0, Ω1 in Hg. Let R(Ω0,Ω1) be the cross-ratio defined by

(2.4) R(Ω0,Ω1) = (Ω0 − Ω1)(Ω0 − Ω1)−1(Ω0 − Ω1)(Ω0 − Ω1)−1.

For brevity, we put R∗ = R(Ω0,Ω1). Then the symplectic length ρ(Ω0,Ω1) of
the geodesic joining Ω0 and Ω1 is given by

(2.5) ρ(Ω0,Ω1)2 = σ

(log
1 +R

1
2
∗

1−R
1
2
∗

)2
 ,

where (
log

1 +R
1
2
∗

1−R
1
2
∗

)2

= 4R∗

( ∞∑
k=0

Rk
∗

2k + 1

)2

.

(2) For M ∈ Sp(g,R), we set

Ω̃0 = M · Ω0 and Ω̃1 = M · Ω1.

Then R(Ω1,Ω0) and R(Ω̃1, Ω̃0) have the same eigenvalues.
(3) All geodesics are symplectic images of the special geodesics

(2.6) α(t) = i diag(at
1, a

t
2, · · · , at

g),

where a1, a2, · · · , ag are arbitrary positive real numbers satisfying the condition
g∑

k=1

(log ak)2 = 1.
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The proof of the above theorem can be found in [131], pp. 289-293.
Let

Dg =
{
W ∈ C(g,g) | W = tW, Ig −WW > 0

}
be the generalized unit disk of degree g. The Cayley transform Ψ : Dg −→ Hg

defined by

(2.7) Ψ(W ) = i (Ig +W )(Ig −W )−1, W ∈ Dg

is a biholomorphic mapping of Dg onto Hg which gives the bounded realization
of Hg by Dg (cf. [131]). A. Korányi and J. Wolf [81] gave a realization of a
bounded symmetric domain as a Siegel domain of the third kind investigating
a generalized Cayley transform of a bounded symmetric domain that generalizes
the Cayley transform Ψ of Dg.

Let

(2.8) T =
1√
2

(
Ig Ig
iIg −iIg

)
be the 2g × 2g matrix represented by Ψ. Then

(2.9) T−1Sp(g,R)T =
{(

P Q
Q P

) ∣∣∣ tPP − tQQ = Ig,
tPQ = tQP

}
.

Indeed, if M =
(
A B
C D

)
∈ Sp(g,R), then

(2.10) T−1MT =
(
P Q
Q P

)
,

where

(2.11) P =
1
2

{
(A+D) + i (B − C)

}
and

(2.12) Q =
1
2

{
(A−D)− i (B + C)

}
.

For brevity, we set
G∗ = T−1Sp(g,R)T.

Then G∗ is a subgroup of SU(g, g), where

SU(g, g) =
{
h ∈ C(g,g)

∣∣ thIg,gh = Ig,g

}
, Ig,g =

(
Ig 0
0 −Ig

)
.

In the case g = 1, we observe that

T−1Sp(1,R)T = T−1SL2(R)T = SU(1, 1).

If g > 1, then G∗ is a proper subgroup of SU(g, g). In fact, since tTJgT = − i Jg,
we get

(2.13) G∗ =
{
h ∈ SU(g, g)

∣∣ thJgh = Jg

}
= SU(g, g) ∩ Sp(g,C),

where
Sp(g,C) =

{
α ∈ C(2g,2g)

∣∣ tαJg α = Jg

}
.
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Let

P+ =
{(

Ig Z
0 Ig

) ∣∣∣ Z = tZ ∈ C(g,g)

}
be the P+-part of the complexification of G∗ ⊂ SU(g, g). We note that the

Harish-Chandra decomposition of an element
(
P Q
Q P

)
in G∗ is

(
P Q
Q P

)
=
(
Ig QP

−1

0 Ig

)(
P −QP−1

Q 0
0 P

)(
Ig 0

P
−1
Q Ig

)
.

For more detail, we refer to [75, p. 155]. Thus the P+-component of the follow-
ing element (

P Q
Q P

)
·
(
Ig W
0 Ig

)
, W ∈ Dg

of the complexification of GJ
∗ is given by

(2.14)
(
Ig (PW +Q)(QW + P )−1

0 Ig

)
.

We note that QP
−1 ∈ Dg. We get the Harish-Chandra embedding of Dg into

P+ (cf. [75, p. 155] or [120, pp. 58-59]). Therefore we see that G∗ acts on Dg

transitively by

(2.15)
(
P Q
Q P

)
·W = (PW +Q)(QW + P )−1,

(
P Q
Q P

)
∈ G∗, W ∈ Dg.

The isotropy subgroup K∗ of G∗ at the origin o is given by

K∗ =
{(

P 0
0 P

) ∣∣∣ P ∈ U(g)
}
.

Thus G∗/K∗ is biholomorphic to Dg. It is known that the action (1.1) is
compatible with the action (2.15) via the Cayley transform Ψ (cf. (2.7)). In
other words, if M ∈ Sp(g,R) and W ∈ Dg, then

(2.16) M ·Ψ(W ) = Ψ(M∗ ·W ),

where M∗ = T−1MT ∈ G∗.

For W = (wij) ∈ Dg, we write dW = (dwij) and dW = (dwij). We put

∂

∂W
=
(

1 + δij
2

∂

∂wij

)
and

∂

∂W
=
(

1 + δij
2

∂

∂wij

)
.

Using the Cayley transform Ψ : Dg −→ Hg, Siegel showed (cf. [131]) that

(2.17) ds2∗ = 4σ
(
(Ig −WW )−1dW (Ig −WW )−1dW

)
is a G∗-invariant Riemannian metric on Dg and Maass [91] showed that its
Laplacian is given by

(2.18) ∆∗ = σ

(
(Ig −WW ) t

(
(Ig −WW )

∂

∂W

)
∂

∂W

)
.
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3. Invariant Differential Operators on Siegel Space

For brevity, we write G = Sp(g,R). The isotropy subgroup K at iIg for the
action (1.1) is a maximal compact subgroup given by

K =
{(

A −B
B A

) ∣∣∣ A tA+B tB = Ig, A
tB = B tA, A,B ∈ R(g,g)

}
.

Let k be the Lie algebra of K. Then the Lie algebra g of G has a Cartan
decomposition g = k⊕ p, where

p =
{(

X Y
Y −X

) ∣∣∣ X = tX, Y = tY, X, Y ∈ R(g,g)

}
.

The subspace p of g may be regarded as the tangent space of Hg at iIg. The
adjoint representation of G on g induces the action of K on p given by

(3.1) k · Z = kZ tk, k ∈ K, Z ∈ p.

Let Tg be the vector space of g × g symmetric complex matrices. We let
ψ : p −→ Tg be the map defined by

(3.2) ψ

((
X Y
Y −X

))
= X + i Y,

(
X Y
Y −X

)
∈ p.

We let δ : K −→ U(g) be the isomorphism defined by

(3.3) δ

((
A −B
B A

))
= A + i B,

(
A −B
B A

)
∈ K,

where U(g) denotes the unitary group of degree g. We identify p (resp. K)
with Tg (resp. U(g)) through the map Ψ (resp. δ). We consider the action of
U(g) on Tg defined by

(3.4) h · Z = hZ th, h ∈ U(g), Z ∈ Tg.

Then the adjoint action (3.1) of K on p is compatible with the action (3.4) of
U(g) on Tg through the map ψ. Precisely for any k ∈ K and ω ∈ p, we get

(3.5) ψ(k ω tk) = δ(k)ψ(ω) tδ(k).

The action (3.4) induces the action of U(g) on the polynomial algebra Pol(Tg)
and the symmetric algebra S(Tg) respectively. We denote by Pol(Tg)U(g)(
resp. S(Tg)U(g)

)
the subalgebra of Pol(Tg)

(
resp. S(Tg)

)
consisting of U(g)-

invariants. The following inner product ( , ) on Tg defined by

(Z,W ) = tr
(
ZW

)
, Z,W ∈ Tg

gives an isomorphism as vector spaces

(3.6) Tg
∼= T ∗g , Z 7→ fZ , Z ∈ Tg,

where T ∗g denotes the dual space of Tg and fZ is the linear functional on Tg

defined by
fZ(W ) = (W,Z), W ∈ Tg.

It is known that there is a canonical linear bijection of S(Tg)U(g) onto the
algebra D(Hg) of differential operators on Hg invariant under the action (1.1)
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of G. Identifying Tg with T ∗g by the above isomorphism (3.6), we get a canonical
linear bijection

(3.7) Φ : Pol(Tg)U(g) −→ D(Hg)

of Pol(Tg)U(g) onto D(Hg). The map Φ is described explicitly as follows. Simi-
larly the action (3.1) induces the action of K on the polynomial algebra Pol(p)
and S(p) respectively. Through the map ψ, the subalgebra Pol(p)K of Pol(p)
consisting of K-invariants is isomorphic to Pol(Tg)U(g). We put N = g(g + 1).
Let {ξα | 1 ≤ α ≤ N } be a basis of p. If P ∈ Pol(p)K , then

(3.8)
(
Φ(P )f

)
(gK) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N∑

α=1

tαξα

)
K

)]
(tα)=0

,

where f ∈ C∞(Hg). We refer to [53, 54] for more detail. In general, it is hard
to express Φ(P ) explicitly for a polynomial P ∈ Pol(p)K .

According to the work of Harish-Chandra [46, 47], the algebra D(Hg) is
generated by g algebraically independent generators and is isomorphic to the
commutative ring C[x1, · · · , xg] with g indeterminates. We note that g is the
real rank of G. Let gC be the complexification of g. It is known that D(Hg) is
isomorphic to the center of the universal enveloping algebra of gC (cf. [129]).

Using a classical invariant theory (cf. [58, 147]), we can show that Pol(Tg)U(g)

is generated by the following algebraically independent polynomials

(3.9) qj(Z) = tr
((
ZZ
)j )

, j = 1, 2, · · · , g.

For each j with 1 ≤ j ≤ g, the image Φ(qj) of qj is an invariant differential
operator on Hg of degree 2j. The algebra D(Hg) is generated by g algebraically
independent generators Φ(q1),Φ(q2), · · · ,Φ(qg). In particular,

(3.10) Φ(q1) = c1 tr
(
Y t

(
Y
∂

∂Ω

)
∂

∂Ω

)
for some constant c1.

We observe that if we take Z = X+i Y with realX,Y , then q1(Z) = q1(X,Y ) =
tr
(
X2 + Y 2

)
and

q2(Z) = q2(X,Y ) = tr
((
X2 + Y 2

)2 + 2X
(
XY − Y X

)
Y
)
.

We propose the following problem.

Problem. Express the images Φ(qj) explicitly for j = 2, 3, · · · , g.

We hope that the images Φ(qj) for j = 2, 3, · · · , g are expressed in the form
of the trace as Φ(q1).

Example 3.1. We consider the case g = 1. The algebra Pol(T1)U(1) is gener-
ated by the polynomial

q(z) = z z, z ∈ C.
Using Formula (3.8), we get
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Φ(q) = 4 y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Therefore D(H1) = C
[
Φ(q)

]
.

Example 3.2. We consider the case g = 2. The algebra Pol(T2)U(2) is gener-
ated by the polynomial

q1(Z) = σ
(
Z Z

)
, q2(Z) = σ

((
Z Z

)2)
, Z ∈ T2.

Using Formula (3.8), we may express Φ(q1) and Φ(q2) explicitly. Φ(q1) is
expressed by Formula (3.10). The computation of Φ(q2) might be quite tedious.
We leave the detail to the reader. In this case, Φ(q2) was essentially computed
in [19], Proposition 6. Therefore D(H2) = C

[
Φ(q1),Φ(q2)

]
. The authors of [19]

computed the center of U(gC).

4. Siegel’s Fundamental Domain

We let
Pg =

{
Y ∈ R(g,g) | Y = tY > 0

}
be an open cone in RN with N = g(g+1)/2. The general linear group GL(g,R)
acts on Pg transitively by

(4.1) g ◦ Y := gY tg, g ∈ GL(g,R), Y ∈ Pg.

Thus Pg is a symmetric space diffeomorphic to GL(g,R)/O(g).
The fundamental domain Rg for GL(g,Z)\Pg which was found by

H. Minkowski [97] is defined as a subset of Pg consisting of Y = (yij) ∈ Pg

satisfying the following conditions (M.1)–(M.2) (cf. [65] p. 191 or [92] p. 123):
(M.1) aY ta ≥ ykk for every a = (ai) ∈ Zg in which ak, · · · , ag are relatively

prime for k = 1, 2, · · · , g.
(M.2) yk,k+1 ≥ 0 for k = 1, · · · , g − 1.
We say that a point of Rg is Minkowski reduced or simply M-reduced. Rg

has the following properties (R1)–(R4):
(R1) For any Y ∈ Pg, there exist a matrix A ∈ GL(g,Z) and R ∈ Rg such

that Y = R[A] (cf. [65] p. 191 or [92] p. 139). That is,

GL(g,Z) ◦ Rg = Pg.

(R2) Rg is a convex cone through the origin bounded by a finite number of
hyperplanes. Rg is closed in Pg (cf. [92] p. 139).

(R3) If Y and Y [A] lie in Rg for A ∈ GL(g,Z) with A 6= ±Ig, then Y lies on
the boundary ∂Rg of Rg. Moreover Rg ∩ (Rg[A]) 6= ∅ for only finitely many
A ∈ GL(g,Z) (cf. [92] p. 139).

(R4) If Y = (yij) is an element of Rg, then

y11 ≤ y22 ≤ · · · ≤ ygg and |yij | <
1
2
yii for 1 ≤ i < j ≤ g.

We refer to [65] p. 192 or [92] pp. 123-124.
Remark. Grenier [43] found another fundamental domain for GL(g,Z)\Pg.



272 JAE-HYUN YANG

For Y = (yij) ∈ Pg, we put

dY = (dyij) and
∂

∂Y
=
(

1 + δij
2

∂

∂yij

)
.

Then we can see easily that

(4.2) ds2 = σ((Y −1dY )2)

is a GL(g,R)-invariant Riemannian metric on Pg and its Laplacian is given by

∆ = σ

((
Y

∂

∂Y

)2
)
.

We also can see that

dµg(Y ) = (detY )−
g+1
2

∏
i≤j

dyij

is aGL(g,R)-invariant volume element on Pg. The metric ds2 on Pg induces the
metric ds2R on Rg. Minkowski [97] calculated the volume of Rg for the volume
element [dY ] :=

∏
i≤j dyij explicitly. Later Siegel computed the volume of Rg

for the volume element [dY ] by a simple analytic method and generalized this
case to the case of any algebraic number field.

Siegel [131] determined a fundamental domain Fg for Γg\Hg. We say that
Ω = X + iY ∈ Hg with X, Y real is Siegel reduced or S-reduced if it has the
following three properties:

(S.1) det(Im (γ · Ω)) ≤ det(Im (Ω)) for all γ ∈ Γg;
(S.2) Y = Im Ω is M-reduced, that is, Y ∈ Rg ;
(S.3) |xij | ≤ 1

2 for 1 ≤ i, j ≤ g, where X = (xij).
Fg is defined as the set of all Siegel reduced points in Hg. Using the highest

point method, Siegel proved the following (F1)–(F3) (cf. [65] pp. 194-197 or
[92] p. 169):

(F1) Γg · Fg = Hg, i.e., Hg = ∪γ∈Γgγ · Fg.

(F2) Fg is closed in Hg.

(F3) Fg is connected and the boundary of Fg consists of a finite number of
hyperplanes.

The metric ds2 given by (2.1) induces a metric ds2F on Fg.

Siegel [131] computed the volume of Fg

(4.3) vol (Fg) = 2
g∏

k=1

π−k Γ(k) ζ(2k),

where Γ(s) denotes the Gamma function and ζ(s) denotes the Riemann zeta
function. For instance,

vol (F1) =
π

3
, vol (F2) =

π3

270
, vol (F3) =

π6

127575
, vol (F4) =

π10

200930625
.
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For a fixed element Ω ∈ Hg, we set

LΩ := Zg + ZgΩ, Zg = Z(1,g).

It follows from the positivity of Im Ω that LΩ is a lattice in Cg. We see easily
that if Ω is an element of Hg, the period matrix Ω∗ := (Ig,Ω) satisfies the
Riemann conditions (RC.1) and (RC.2) :

(RC.1) Ω∗Jg,
t Ω∗ = 0.

(RC.2) − 1
i Ω∗Jg

tΩ∗ > 0.

Thus the complex torus AΩ := Cg/LΩ is an abelian variety.
We fix an element Ω = X + iY of Hg with X = Re Ω and Y = Im Ω. For a

pair (A,B) with A,B ∈ Zg, we define the function EΩ;A,B : Cg −→ C by

EΩ;A,B(Z) = e2πi(σ( tAU )+ σ((B−AX)Y −1 tV )),

where Z = U + iV is a variable in Cg with real U, V .

Lemma 4.1. For any A,B ∈ Zg, the function EΩ;A,B satisfies the following
functional equation

EΩ;A,B(Z + λΩ + µ) = EΩ;A,B(Z), Z ∈ Cg

for all λ, µ ∈ Zg. Thus EΩ;A,B can be regarded as a function on AΩ.

Proof. The proof can be found in [157]. �

We let L2(AΩ) be the space of all functions f : AΩ −→ C such that

||f ||Ω :=
∫

AΩ

|f(Z)|2dvΩ,

where dvΩ is the volume element on AΩ normalized so that
∫

AΩ
dvΩ = 1. The

inner product ( , )Ω on the Hilbert space L2(AΩ) is given by

(f, g)Ω :=
∫

AΩ

f(Z) g(Z) dvΩ, f, g ∈ L2(AΩ).

Theorem 4.1. The set {EΩ;A,B | A,B ∈ Zg } is a complete orthonormal basis
for L2(AΩ). Moreover we have the following spectral decomposition of ∆Ω:

L2(AΩ) =
⊕

A,B∈Zg

C · EΩ;A,B .

Proof. The complete proof can be found in [157]. �

5. Siegel Modular Forms

5.1. Basic Properties of Siegel Modular Forms

Let ρ be a rational representation of GL(g,C) on a finite dimensional com-
plex vector space Vρ.
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Definition. A holomorphic function f : Hg −→ Vρ is called a Siegel modular
form with respect to ρ if

(5.1) f(γ · Ω) = f
(
(AΩ +B)(CΩ +D)−1

)
= ρ(CΩ +D)f(Ω)

for all
(
A B
C D

)
∈ Γg and all Ω ∈ Hg. Moreover if g = 1, we require that f is

holomorphic at the cusp ∞.
We denote by Mρ(Γg) the vector space of all Siegel modular forms with

respect to Γg. If ρ = detk for k ∈ Z, a Siegel modular form f with respect to
ρ satisfies the condition

(5.2) f(γ · Ω) = det(CΩ +D)k f(Ω),

where γ and Ω are as above. In this case f is called a (classical) Siegel modular
form on Hg of weight k. We denote by Mk(Γg) the space of all Siegel modular
forms on Hg of weight k.

Remark. (1) If ρ = ρ1 ⊕ ρ2 is a direct sum of two finite dimensional rational
representations of GL(g,C), then it is easy to see that Mρ(Γg) is isomorphic
to Mρ1(Γg)⊕Mρ1(Γg). Therefore it suffices to study Mρ(Γg) for an irreducible
representation ρ of GL(g,C).
(2) We may equip Vρ with a hermitian inner product ( , ) satisfying the fol-
lowing condition

(5.3)
(
ρ(x)v1, v2

)
=
(
v1, ρ(tx)v2

)
, x ∈ GL(g,C), v1, v2 ∈ Vρ.

For an irreducible finite dimensional representation (ρ, Vρ) of GL(g,C), there
exist a highest weight k(ρ) = (k1, · · · , kg) ∈ Zg with k1 ≥ · · · ≥ kg and a highest
weight vector vρ(6= 0) ∈ Vρ such that

ρ
(
diag(a1, · · · , ag)

)
vρ =

g∏
i=1

aki
i vρ, a1, · · · , ag ∈ C×.

Such a vector vρ is uniquely determined up to scalars. The number k(ρ) :=
kg is called the weight of ρ. For example, if ρ = detk, its highest weight is
(k, k, · · · , k) and hence its weight is k.

Assume that (ρ, Vρ) is an irreducible finite dimensional rational representa-
tion of GL(g,C). Then it is known [65, 92] that a Siegel modular form f in
Mρ(Γg) admits a Fourier expansion

(5.4) f(Ω) =
∑
T≥0

a(T ) e2πi σ(TΩ),

where T runs over the set of all half-integral semi-positive symmetric matrices
of degree g. We recall that T is said to be half-integral if 2T is an integral
matrix whose diagonal entries are even.

Theorem 5.1. (1) If kg is odd, then Mk(Γg) = 0.
(2) If k < 0, then Mk(Γg) = 0.
(3) Let ρ be a non-trivial irreducible finite dimensional representation of GL(g,C)
with
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highest weight (k1, · · · , kg). If Mρ(Γg) 6= {0}, then kg ≥ 1.
(4) If f ∈ Mρ(Γg), then f is bounded in any subset H(c) of Hg given by the
form

H(c) := {Ω ∈ Hg | ImΩ > c Ig }
with any positive real number c > 0.

5.2. The Siegel Operator

Let (ρ, Vρ) be an irreducible finite dimensional representation of GL(g,C).
For any positive integer r with 0 ≤ r < g, we define the operator Φρ,r on
Mρ(Γg) by

(5.5)
(
Φρ,rf

)
(Ω1) := lim

t−→∞
f

((
Ω1 0
0 itIg−r

))
, f ∈Mρ(Γg), Ω1 ∈ Hr.

We see that Φρ,r is well-defined because the limit of the right hand side of (5.5)
exists (cf. Theorem 5.1. (4)). The operator Φρ,r is called the Siegel operator.
A Siegel modular form f ∈ Mρ(Γg) is said to be a cusp form if Φρ,g−1f = 0.
We denote by Sρ(Γg) the vector space of all cusp forms on Hg with respect to
ρ. Let V (r)

ρ be the subspace of Vρ spanned by the values{(
Φρ,rf

)
(Ω1) | Ω1 ∈ Hr, f ∈Mρ(Γg)

}
.

According to [143], V (r)
ρ is invariant under the action of the subgroup{(

a 0
0 Ig−r

) ∣∣∣ a ∈ GL(r,C)
}
.

Then we have an irreducible rational representation ρ(r) of GL(r,C) on V
(r)
ρ

defined by

ρ(r)(a)v := ρ

((
a 0
0 Ig−r

))
v, a ∈ GL(r,C), v ∈ V (r)

ρ .

We observe that if (k1, · · · , kg) is the highest weight of ρ, then (k1, · · · , kr) is
the highest weight of ρ(r).

Theorem 5.2. The Siegel operator Φdetk,r : Mk(Γg) −→Mk(Γr) is surjective
for k even with k > g+r+3

2 .

The proof of Theorem 5.2 can be found in [144].

We define the Petersson inner product 〈 , 〉P on Mρ(Γg) by

(5.6) 〈f1, f2〉P :=
∫
Fg

(
ρ(Im Ω)f1(Ω), f2(Ω)

)
dvg(Ω), f1, f2 ∈Mρ(Γg),

where Fg is the Siegel’s fundamental domain, ( , ) is the hermitian inner
product defined in (5.3) and dvg(Ω) is the volume element defined by (2.3).
We can check that the integral of (5.6) converges absolutely if one of f1 and f2
is a cusp form. It is easily seen that one has the orthogonal decomposition

Mρ(Γg) = Sρ(Γg)⊕ Sρ(Γg)⊥,
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where
Sρ(Γg)⊥ =

{
f ∈Mρ(Γg) | 〈f, h〉P = 0 for all h ∈ Sρ(Γg)

}
is the orthogonal complement of Sρ(Γg) in Mρ(Γg).

5.3. Construction of Siegel Modular Forms

In this subsection, we provide several well-known methods to construct Siegel
modular forms.

(A) Klingen’s Eisenstein Series

Let r be an integer with 0 ≤ r < g. We assume that k is a positive even
integer. For Ω ∈ Hg, we write

Ω =
(

Ω1 ∗
∗ Ω2

)
, Ω1 ∈ Hr, Ω2 ∈ Hg−r.

For a fixed cusp form f ∈ Sk(Γr) of weight k, H. Klingen [73] introduced the
Eisenstein series Eg,r,k(f) formally defined by
(5.7)

Eg,r,k(f)(Ω) :=
∑

γ∈Pr\Γg

f
(
(γ · Ω)1

)
· det(CΩ +D)−k, γ =

(
A B
C D

)
∈ Γg,

where

Pr =



A1 0 B1 ∗
∗ U ∗ ∗
C1 0 D1 ∗
0 0 0 tU−1

 ∈ Γg

∣∣∣ (A1 B1

C1 D1

)
∈ Γr, U ∈ GL(g − r,Z)


is a parabolic subgroup of Γg. We note that if r = 0, and if f = 1 is a constant,
then

Eg,0,k(Ω) =
∑
C,D

det(CΩ +D)−k,

where
(
A B
C D

)
runs over the set of all representatives for the cosetsGL(g,Z)\Γg.

Klingen [73] proved the following :

Theorem 5.3. Let g ≥ 1 and let r be an integer with 0 ≤ r < g. We assume
that k is a positive even integer with k > g + r + 1. Then for any cusp form
f ∈ Sk(Γr) of weight k,the Eisenstein series Eg,r,k(f) converges to a Siegel
modular form on Hg of the same weight k and one has the following property

(5.8) Φdetk, rEg,r,k(f) = f.

The proof of the above theorem can be found in [73, 74, 92].

(B) Theta Series

Let (ρ, Vρ) be a finite dimensional rational representation of GL(g,C). We
let Hρ(r, g) be the space of pluriharmonic polynomials P : C(r,g) −→ Vρ with
respect to (ρ, Vρ). That is, P ∈ Hρ(r, g) if and only if P : C(r,g) −→ Vρ is
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a Vρ-valued polynomial on C(r,g) satisfying the following conditions (5.9) and
(5.10) : if z = (zkj) is a coordinate in C(r,g),

(5.9)
r∑

k=1

∂2P

∂zki∂zkj
= 0 for all i, j with 1 ≤ i, j ≤ g

and

(5.10) P (zh) = ρ(th) det(h)−
r
2P (z) for all z ∈ C(r,g) and h ∈ GL(g,C).

Now we let S be a positive definite even unimodular matrix of degree r. To a
pair (S, P ) with P ∈ Hρ(r, g), we attach the theta series

(5.11) ΘS,P (Ω) :=
∑

A∈Z(r,g)

P (S
1
2A) eπi σ(S[A]Ω)

which converges for all Ω ∈ Hg. E. Freitag [34] proved that ΘS,P is a Siegel
modular form on Hg with respect to ρ, i.e., ΘS,P ∈Mρ(Γg).

Next we describe a method of constructing Siegel modular forms using the
so-called theta constants.

We consider a theta characteristic

ε =
(
ε′

ε′′

)
∈ {0, 1}2g with ε′, ε′′ ∈ {0, 1}g.

A theta characteristic ε =
(
ε′

ε′′

)
is said to be odd (resp. even) if tε′ε′′ is odd

(resp. even). Now to each theta characteristic ε =
(
ε′

ε′′

)
, we attach the theta

series

(5.12) θ[ε](Ω) :=
∑

m∈Zg

eπi
{

Ω
[
m+ 1

2 ε′
]

+ t
(
m+ 1

2 ε′
)
ε′′
}
, Ω ∈ Hg.

If ε is odd, we see that θ[ε] vanishes identically. If ε is even, θ[ε] is a Siegel
modular form on Hg of weight 1

2 with respect to the principal congreuence
subgroup Γg(2) (cf. [65, 103]). Here

Γg(2) =
{
σ ∈ Γg | σ ≡ I2g (mod 2)

}
is a congruence subgroup of Γg of level 2. These theta series θ[ε] are called
theta constants. It is easily checked that there are 2g−1(2g + 1) even theta
characteristics. These theta constants θ[ε] can be used to construct Siegel
modular forms with respect to Γg. We provide several examples. For g = 1,
we have

(θ[ε00] θ[ε01] θ[ε11])
8 ∈ S12(Γ1),

where

ε00 =
(

0
0

)
, ε01 =

(
0
1

)
and ε11 =

(
1
1

)
.

For g = 2, we get
χ10 := −2−14

∏
ε∈E

θ[ε]2 ∈ S10(Γ2)
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and (∏
ε∈E

θ[ε]

)
·
∑

ε1,ε2,ε3

(θ[ε1] θ[ε2] θ[ε3])
20 ∈ S35(Γ2),

where E denotes the set of all even theta characteristics and (ε1, ε2, ε3) runs
over the set of triples of theta characteristics such that ε1 + ε2 + ε3 is odd. For
g = 3, we have ∏

ε∈E
θ[ε] ∈ S18(Γ3).

We refer to [65] for more details.

5.4. Singular Modular Forms

We know that a Siegel modular form f ∈Mρ(Γg) has a Fourier expansion

f(Ω) =
∑
T≥0

a(T ) e2πi σ(TΩ),

where T runs over the set of all half-integral semi-positive symmetric matrices
of degree g. A Siegel modular form f ∈Mρ(Γg) is said to be singular if a(T ) 6= 0
implies det(T ) = 0. We observe that the notion of singular modular forms is
opposite to that of cusp forms. Obviously if g = 1, singular modular forms are
constants.

We now characterize singular modular forms in terms of the weight of ρ and
a certain differential operator. For a coordinate Ω = X+ iY in Hg with X real
and Y = (yij) ∈ Pg (cf. Section 4), we define the differential

(5.13) Mg := det(Y ) · det
(
∂

∂Y

)
which is invariant under the action (4.1) of GL(g,R). Here

∂

∂Y
=
(

1 + δij
2

∂

∂yij

)
.

Using the differential operator Mg, Maass [92, pp. 202-204] proved that if a
nonzero singular modular form on Hg of weight k exists, then nk ≡ 0 (mod 2)
and 0 < 2k ≤ g − 1. The converse was proved by Weissauer (cf. [143, Satz 4]).

Theorem 5.4. Let ρ be an irreducible rational finite dimensional represen-
tation of GL(g,C) with highest weight (k1, · · · , kg). Then a non-zero Siegel
modular form f ∈Mρ(Γg) is singular if and only if 2k(ρ) = 2kg < g.

The above theorem was proved by Freitag [33], Weissauer [143] et al. By
Theorem 5.6, we see that the weight of a singular modular form is small. For
instance, W. Duke and Ö. Imamoǧlu [27] proved that S6(Γg) = 0 for all g. In
a sense we say that there are no cusp forms of small weight.

Theorem 5.5. Let f ∈ Mρ(Γg) be a Siegel modular form with respect to a
rational representation ρ of GL(g,C). Then the following are equivalent :

(1) f is a singular modular form.
(2) f satisfies the differential equation Mgf = 0.
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We refer to [92] and [152] for the proof.

Let f ∈Mk(Γg) be a nonzero singular modular form of weight k. According
to Theorem 5.4, 2k < g. We can show that k is divisible by 4. Let S1, · · · , Sh

be a complete system of representatives of positive definite even unimodular
integral matrices of degree 2k. Freitag [33, 34] proved that f(Ω) can be written
as a linear combination of theta series θS1 , · · · , θSh

, where θSν
(1 ≤ ν ≤ h) is

defined by

(5.14) θSν (Ω) :=
∑

A∈Z(2k,g)

eπi σ(Sν [A]Ω), 1 ≤ ν ≤ h.

According to Theorem 5.5, we need to investigate some properties of the
weight of ρ in order to understand singular modular forms. Let (k1, · · · , kg) be
the highest weight of ρ. We define the corank of ρ by

corank(ρ) :=
∣∣∣{j | 1 ≤ j ≤ g, kj = kg

}∣∣∣.
Let

f(Ω) =
∑
T≥0

a(T ) e2πi σ(TΩ)

be a Siegel modular form in Mρ(Γg). The notion of the rank of f and that of
the corank of f were introduced by Weissauer [143] as follows :

rank(f) := max
{

rank (T ) | a(T ) 6= 0
}

and
corank(f) := g −min

{
rank (T ) | a(T ) 6= 0

}
.

Weissauer [143] proved the following.

Theorem 5.6. Let ρ be an irreducible rational representation of GL(g,C) with
highest weight (k1, · · · , kg) such that corank(ρ) < g − kg. Assume that∣∣∣{j | 1 ≤ j ≤ g, kj = kg + 1

}∣∣∣ < 2
(
g − kg − corank(ρ)

)
.

Then Mρ(Γg) = 0.

6. The Hecke Algebra

6.1. The Structure of the Hecke Algebra

For a positive integer g, we let Γg = Sp(g,Z) and let

∆g := GSp(g,Q) =
{
M ∈ GL(2g,Q) | tMJgM = l(M)Jg, l(M) ∈ Q×

}
be the group of symplectic similitudes of the rational symplectic vector space
(Q2g, 〈 , 〉). We put

∆+
g := GSp(g,Q)+ =

{
M ∈ ∆g | l(M) > 0

}
.

Following the notations in [34], we let H (Γg,∆g) be the complex vector
space of all formal finite sums of double cosets ΓgMΓg with M ∈ ∆+

g . A



280 JAE-HYUN YANG

double coset ΓgMΓg (M ∈ ∆+
g ) can be written as a finite disjoint union of

right cosets ΓgMν (1 ≤ ν ≤ h) :

ΓgMΓg = ∪h
ν=1ΓgMν (disjoint).

Let L (Γg,∆g) be the complex vector space consisting of formal finite sums of
right cosets ΓgM with M ∈ ∆+. For each double coset ΓgMΓg = ∪h

ν=1ΓgMν

we associate an element j(ΓgMΓg) in L (Γg,∆g) defined by

j(ΓgMΓg) :=
h∑

ν=1

ΓgMν .

Then j induces a linear map

(6.1) j∗ : H (Γg,∆g) −→ L (Γg,∆g).

We observe that ∆g acts on L (Γg,∆g) as follows:

( h∑
j=1

cj ΓgMj

)
·M =

h∑
j=1

cj ΓgMjM, M ∈ ∆g.

We denote

L (Γg,∆g)Γg :=
{
T ∈ L (Γg,∆g) | T · γ = T for all γ ∈ Γg

}
be the subspace of Γg-invariants in L (Γg,∆g). Then we can show that
L (Γg,∆g)Γg coincides with the image of j∗ and the map

(6.2) j∗ : H (Γg,∆g) −→ L (Γg,∆g)Γg

is an isomorphism of complex vector spaces (cf. [34, p. 228]). From now on we
identify H (Γg,∆g) with L (Γg,∆g)Γg .

We define the multiplication of the double coset ΓgMΓg and ΓgN by

(6.3) (ΓgMΓg) · (ΓgN) =
h∑

j=1

ΓgMjN, M,N ∈ ∆g,

where ΓgMΓg = ∪h
j=1ΓgMj (disjoint). The definition (6.3) is well defined, i.e.,

independent of the choice of Mj and N . We extend this multiplication to
H (Γg,∆g) and L (Γg,∆g). Since

H (Γg,∆g) ·H (Γg,∆g) ⊂H (Γg,∆g),

H (Γg,∆g) is an associative algebra with the identity element ΓgI2gΓg = Γg.
The algebra H (Γg,∆g) is called the Hecke algebra with respect to Γg and ∆g.

We now describe the structure of the Hecke algebra H (Γg,∆g). For a
prime p, we let Z[1/p] be the ring of all rational numbers of the form a ·pν with
a, ν ∈ Z. For a prime p, we denote

∆g,p := ∆g ∩GL
(
2g,Z[1/p]

)
.

Then we have a decomposition of H (Γg,∆g)

H (Γg,∆g) =
⊗

p : prime

H (Γg,∆g,p)
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as a tensor product of local Hecke algebras H (Γg,∆g,p). We denote by
Ȟ (Γg,∆g) (resp. Ȟ (Γg,∆g,p) the subring of H (Γg,∆g) (resp. H (Γg,∆g,p)
by integral matrices.

In order to describe the structure of local Hecke operators H (Γg,∆g,p), we
need the following lemmas.

Lemma 6.1. Let M ∈ ∆+
g with tMJgM = lJg. Then the double coset ΓgMΓg

has a unique representative of the form

M0 = diag(a1, · · · , ag, d1, · · · , dg),

where ag|dg, aj > 0, ajdj = l for 1 ≤ j ≤ g and ak|ak+1 for 1 ≤ k ≤ g − 1.

For a positive integer l, we let

Og(l) :=
{
M ∈ GL(2g,Z) | tMJgM = lJg

}
.

Then we see that Og(l) can be written as a finite disjoint union of double cosets
and hence as a finite union of right cosets. We define T (l) as the element of
H (Γg,∆g) defined by Og(l).

Lemma 6.2. (a) Let l be a positive integer. Let

Og(l) = ∪h
ν=1ΓgMν (disjoint)

be a disjoint union of right cosets ΓgMν (1 ≤ ν ≤ h). Then each right coset
ΓgMν has a representative of the form

Mν =
(
Aν Bν

0 Dν

)
, tAνDν = lIg, Aν is upper triangular.

(b) Let p be a prime. Then

T (p) = Og(p) = Γg

(
Ig 0
0 pIg

)
Γg

and

T (p2) =
g∑

i=0

Ti(p2),

where

Tk(p2) :=


Ig−k 0 0 0

0 pIk 0 0
0 0 p2Ig−k 0
0 0 0 pIk

Γg, 0 ≤ k ≤ g.

Proof. The proof can be found in [34, p. 225 and p. 250]. �
For example, Tg(p2) = Γg(pI2g)Γg and

T0(p2) = Γg

(
Ig 0
0 p2Ig

)
Γg = T (p)2.

We have the following

Theorem 6.1. The local Hecke algebra Ȟ (Γg,∆g,p) is generated by alge-
braically independent generators T (p), T1(p2), · · · , Tg(p2).
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Proof. The proof can be found in [34, p. 250 and p. 261]. �

On ∆g we have the anti-automorphism M 7→ M∗ := l(M)M−1 (M ∈ ∆g).
Obviously Γ∗g = Γg. By Lemma 6.1, (ΓgMΓg)∗ = ΓgM

∗Γg = ΓgMΓg. Accord-
ing to [125], Proposition 3.8, H (Γg,∆g) is commutative.

Let X0, X1, · · · , Xg be the g + 1 variables. We define the automorphisms

wj : C
[
X±1

0 , X±1
1 , · · · , X±1

g

]
−→ C

[
X±1

0 , X±1
1 , · · · , X±1

g

]
, 1 ≤ j ≤ g

by

wj(X0) = X0X
−1
j , wj(Xj) = X−1

j , wj(Xk) = Xk for k 6= 0, j.

Let Wg be the finite group generated by w1, · · · , wg and the permutations of
variables X1, · · · , Xg. Obviously w2

j is the identity map and |Wg| = 2gg!.

Theorem 6.2. There exists an isomorphism

Q : H (Γg,∆g,p) −→ C
[
X±1

0 , X±1
1 , · · · , X±1

g

]Wg
.

In fact, Q is defined by

Q
( h∑

j=1

ΓgMj

)
=

h∑
j=1

Q(ΓgMj) =
h∑

j=1

X
−k0(j)
0

g∏
ν=1

(
p−νXν

)kν(j)|detAj |g+1,

where we choose the representative Mj of ΓgMj of the form

Mj =
(
Aj Bj

0 Dj

)
, Aj =

p
k1(j) . . . ∗

0
. . .

...
0 0 pkg(j)

 .

We note that the integers k1(j), · · · , kg(j) are uniquely determined.

Proof. The proof can be found in [34]. �

For a prime p, we let

H (Γg,∆g,p)Q :=
{∑

cj ΓgMjΓg ∈H (Γg,∆g,p) | cj ∈ Q
}

be the Q-algebra contained in H (Γg,∆g,p). We put

Gp := GSp(g,Qp) and Kp = GSp(g,Zp).

We can identify H (Γg,∆g,p)Q with the Q-algebra H Q
g,p of Q-valued locally

constant, Kp-biinvariant functions on Gp with compact support. The multipli-
cation on H Q

g,p is given by

(f1 ∗ f2)(h) =
∫

Gp

f1(g) f2(g−1h)dg, f1, f2 ∈H Q
g,p,

where dg is the unique Haar measure on Gp such that the volume of Kp is
1. The correspondence is obtained by sending the double coset ΓgMΓg to the
characteristic function of KpMKp.

In order to describe the structure of H Q
g,p, we need to understand the p-

adic Hecke algebras of the diagonal torus T and the Levi subgroup M of the
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standard parabolic group. Indeed, T is defined to be the subgroup consisting
of diagonal matrices in ∆g and

M =
{(

A 0
0 D

)
∈ ∆g

}
is the Levi subgroup of the parabolic subgroup{(

A B
0 D

)
∈ ∆g

}
.

Let Y be the co-character group of T, i.e., Y = Hom(Gm,T).We define the local
Hecke algebra Hp(T) for T to be the Q-algebra of Q-valued, T(Zp)-biinvariant
functions on T(Qp) with compact support. Then Hp(T) ∼= Q[Y ], where Q[Y ]
is the group algebra over Q of Y . An element λ ∈ Y corresponds the charac-
teristic function of the double coset Dλ = Kpλ(p)Kp. It is known that Hp(T)
is isomorphic to the ring Q

[
(u1/v1)±1, · · · , (ug/vg)±1, (v1 · · · vg)±1

]
under the

map
(a1, · · · , ag, c) 7→ (u1/v1)a1 · · · (ug/vg)ag (v1 · · · vg)c.

Similarly we have a p-adic Hecke algebra Hp(M). Let W∆g = N(T)/T be the
Weyl group with respect to (T,∆g), where N(T) is the normalizer of T in ∆g.
Then W∆g

∼= Sg n (Z/2Z)g, where the generator of the i-th factor Z/2Z acts
on a matrix of the form diag(a1, · · · , ag, d1, · · · , dg) by interchanging ai and
di, and the symmetry group Sg acts by permuting the ai’s and di’s. We note
that W∆g is isomorphic to Wg. The Weyl group WM with respect to (T,M) is
isomorphic to Sg. We can prove that the algebra Hp(T)W∆g of W∆g

-invariants
in Hp(T) is isomorphic to Q

[
Y ±1

0 , Y1, · · · , Yg

]
(cf. [34]). We let

B =
{(

A B
0 D

)
∈ ∆g

∣∣∣ A is upper triangular, D is lower triangular
}

be the Borel subgroup of ∆g. A set Φ+ of positive roots in the root system Φ
determined by B. We set ρ = 1

2

∑
α∈Φ+ α.

Now we have the map αM : M −→ Gm defined by

αM(M) := l(M)−
g(g+1)

2
(
detA

)g+1
, M =

(
A 0
0 D

)
∈M

and the map βT : T −→ Gm defined by

βT(diag(a1, · · · , ag, d1, · · · , dg)) :=
g∏

i=1

ag+1−2i
1 , diag(a1, · · · , ag, d1, · · · , dg) ∈ T.

Let θT := αM βT be the character of T. The Satake’s spherical map Sp,M :
H Q

g,p −→Hp(M) is defined by

(6.4) Sp,M(φ)(m) := |αM(m)|p
∫

U(Qp)

φ(mu)du, φ ∈H Q
g,p, m ∈M,

where | |p is the p-adic norm and U(Qp) denotes the unipotent radical of ∆g.
Also another Satake’s spherical map SM,T : Hp(M) −→Hp(T) is defined by

(6.5) SM,T(f)(t) := |βT(t)|p
∫

M∩N
f(tn)dn, t ∈Hp(T), t ∈ T,
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where N is a nilpotent subgroup of ∆g.

Theorem 6.3. The Satake’s spherical maps Sp,M and SM,T define the isomor-
phisms of Q-algebras

(6.6) H Q
g,p
∼= Hp(T)W∆g and Hp(M) ∼= Hp(T)WM .

We define the elements φk (0 ≤ k ≤ g) in Hp(M) by

φk := p−
k(k+1)

2 M(Zp)

Ig−k 0 0
0 pIg 0
0 0 Ik

M(Zp), i = 0, 1, · · · , g.

Then we have the relation

(6.7) Sp,M(T (p)) =
g∑

k=0

φk

and

(6.8) Sp,M
(
Ti(p2)

)
=

∑
j,k≥0, i+j≤k

mk−j(i) p−(k−j+1
2 )φjφk,

where
ms(i) := ]

{
A ∈M(s,Fp) | tA = A, corank(A) = i

}
.

Moreover, for k = 0, 1, · · · , g, we have

(6.9) SM,T(φk) = (v1 · · · vg)Ek(u1/v1, · · · , ug/vg),

where Ek denotes the elementary symmetric function of degree k. The proof
of (6.7)-(6.9) can be found in [2, pp. 142-145].

6.2. Action of the Hecke Algebra on Siegel Modular Forms

Let (ρ, Vρ) be a finite dimensional irreducible representation of GL(g,C)
with highest weight (k1, · · · , kg). For a function F : Hg −→ Vρ and M ∈ ∆+

g ,
we define

(f |ρM)(Ω) = ρ(CΩ +D)−1f(M · Ω), M =
(
A B
C D

)
∈ ∆+

g .

It is easily checked that f |ρM1M2 =
(
f |ρM1

)
|ρM2 for M1,M2 ∈ ∆+

g .

We now consider a subset M of ∆g satisfying the following properties (M1)
and (M2) :

(M1) M = ∪h
j=1ΓgMj (disjoint union);

(M2) M Γg ⊂M .

For a Siegel modular form f ∈Mρ(Γg), we define

(6.10) T (M )f :=
h∑

j=1

f |ρMj .

This is well defined, i.e., is independent of the choice of representatives Mj

because of the condition (M1). On the other hand, it follows from the condition
(M2) that T (M )f |ργ = T (M )f for all γ ∈ Γg. Thus we get a linear operator

(6.11) T (M ) : Mρ(Γg) −→Mρ(Γg).
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We know that each double coset ΓgMΓg with M ∈ ∆g satisfies the condition
(M1) and (M2). Thus a linear operator T (M ) defined in (6.10 induces natu-
rally the action of the Hecke algebra H (Γg,∆g) on Mρ(Γg). More precisely, if
N =

∑h
j=1 cjΓgMjΓg ∈H (Γg,∆g), we define

T (N ) =
h∑

j=1

cjT (ΓgMjΓg).

Then T (N ) is an endomorphism of Mρ(Γg).

Now we fix a Siegel modular form F in Mρ(Γg) which is an eigenform of
the Hecke algebra H (Γg,∆g). Then we obtain an algebra homomorphism
λF : H (Γg,∆g) −→ C determined by

T (F ) = λF (T )F, T ∈H (Γg,∆g).

By Theorem 6.2 or Theorem 6.3, one has

H (Γg,∆g,p) ∼= H Q
g,p ⊗ C ∼= C[Y ]Wg

∼= Hp(T)Wg ⊗ C
∼= C

[
(u1/v1)±1, · · · , (ug/vg)±1, (v1 · · · vg)±1

]Wg

∼= C[Y0, Y
−1
0 , Y1, · · · , Yg],

where Y0, Y1, · · · , Yg are algebraically independent. Therefore one obtains an
isomorphism

HomC
(
H (Γg,∆g,p),C

) ∼= HomC
(
H Q

g,p ⊗ C,C
) ∼= (C×)(g+1)/Wg.

The algebra homomorphism λF ∈ HomC
(
H (Γg,∆g,p),C

)
is determined by

the Wg-orbit of a certain (g + 1)-tuple
(
αF,0, αF,1, · · · , αF,g

)
of nonzero com-

plex numbers, called the p-Satake parameters of F . For brevity, we put αi =
αF,i, i = 0, 1, · · · , g. Therefore αi is the image of ui/vi and α0 is the image of
v1 · · · vg under the map Θ. Each generator wi ∈W∆g

∼= Wg acts by

wj(α0) = α0α
−1
j wj(αj) = α−1

j , wj(αk) = 0 if k 6= 0, j.

These p-Satake parameters α0, α1 · · · , αg satisfy the relation

α2
0α1 · · ·αg = p

Pg
i=1 ki−g(g+1)/2.

Formula (6.12) follows from the fact that Tg(p2) = Γg(pI2g)Γg is mapped to

p−g(g+1)/2 (v1 · · · vg)2
g∏

i=1

(ui/vi).

We refer to [34, p. 258] for more detail. According to Formula (6.7)-(6.9), the
eigenvalues λF

(
T (p)

)
and λF

(
Ti(p2)

)
with 1 ≤ i ≤ g are given respectively by

(6.12) λF

(
T (p)

)
= α0(1 + E1 + E2 + · · ·+ Eg)

and

(6.13) λF

(
Ti(p2)

)
=

g∑
j,k≥0, j+i≤k

mk−j(i) p−(k−j+1
2 ) α2

0EjEk, i = 1, · · · , g,
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where Ej denotes the elementary symmetric function of degree j in the variables
α1, · · · , αg. The point is that the above eigenvalues λF

(
T (p)

)
and λF

(
Ti(p2)

)
(1 ≤ i ≤ g) are described in terms of the p-Satake parameters α0, α1 · · · , αg.

Examples. (1) Suppose g(τ) =
∑

n≥1 a(n) e2πinτ is a normalized eigenform
in Sk(Γ1). Let p be a prime. Let β be a complex number determined by the
relation

(1− βX)(1− β̄X) = 1− a(p)X + pk−1X2.

Then

β + β̄ = a(p) and ββ̄ = pk−1.

The p-Satake parameters α0 and α1 are given by

(α0, α1) =
(
β,
β̄

β

)
or

(
β̄,
β

β̄

)
.

It is easily checked that α2
0α1 = ββ̄ = pk−1 (cf. Formula (6.12)).

(b) For a positive integer k with k > g + 1, we let

Gk(Ω) :=
∑

M∈Γg,0\Γg

det(CΩ +D)k, M =
(
A B
C D

)

be the Siegel Eisenstein series of weight k in Mk(Γg), where

Γg,0 :=
{(

A B
0 D

)
∈ Γg

}
is a parabolic subgroup of Γg. It is known that Gk is an eigenform of all
the Hecke operators (cf. [34, p. 268]). Let S1, · · · , Sh be a complete system of
representatives of positive definite even unimodular integral matrices of degree
2k. If k > g + 1, the Eisenstein series Gk can be expressed as the weighted
mean of theta series θS1 , · · · , θSh

:

(6.14) Gk(Ω) =
h∑

ν=1

mν θSν (Ω), Ω ∈ Hg,

where

mν =
A(Sν , Sν)−1

A(S1, S1)−1 + · · ·+A(Sh, Sh)−1
, 1 ≤ ν ≤ h.

We recall that the theta series θSν is defined in Formula (5.14) and that for
two symmetric integral matrices S of degree m and T of degree n, A(S, T ) is
defined by

A(S, T ) := ]
{
G ∈ Z(m,n) | S[G] = tGSG = T

}
.

Formula (6.14) was obtained by Witt [148] as a special case of the analytic
version of Siegel’s Hauptsatz.
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7. Jacobi Forms

In this section, we establish the notations and define the concept of Jacobi
forms.

Let
Sp(g,R) = {M ∈ R(2g,2g) | tMJgM = Jg }

be the symplectic group of degree g, where

Jg :=
(

0 Ig
−Ig 0

)
.

For two positive integers g and h, we consider the Heisenberg group

H
(g,h)
R :=

{
(λ, µ, κ) | λ, µ ∈ R(h,g), κ ∈ R(h,h), κ+ µ tλ symmetric

}
endowed with the following multiplication law

(λ, µ, κ) ◦ (λ′, µ′, κ) := (λ+ λ′, µ+ µ′, κ+ κ′ + λ tµ′ − µ tλ′).

We recall that the Jacobi group GJ
g,h := Sp(g,R) nH

(g,h)
R is the semidirect

product of the symplectic group Sp(g,R) and the Heisenberg group H
(g,h)
R

endowed with the following multiplication law

(M, (λ, µ, κ)) · (M ′, (λ′, µ′, κ′)) := (MM ′, (λ̃+ λ′, µ̃+ µ′, κ+ κ′ + λ̃ tµ′ − µ̃ tλ′))

with M,M ′ ∈ Sp(g,R), (λ, µ, κ), (λ′, µ′, κ′) ∈ H(g,h)
R and (λ̃, µ̃) := (λ, µ)M ′. It

is easy to see that GJ
g,h acts on the Siegel-Jacobi space Hg,h := Hg × C(h,g)

transitively by

(7.1) (M, (λ, µ, κ)) · (Ω, Z) := (M · Ω, (Z + λΩ + µ)(CΩ +D)−1),

where M =
(
A B
C D

)
∈ Sp(g,R), (λ, µ, κ) ∈ H(g,h)

R and (Ω, Z) ∈ Hg,h.

Let ρ be a rational representation of GL(g,C) on a finite dimensional com-
plex vector space Vρ. LetM∈ R(h,h) be a symmetric half-integral semi-positive
definite matrix of degree h. Let C∞(Hg,h, Vρ) be the algebra of all C∞ functions
on Hg,h with values in Vρ. For f ∈ C∞(Hg,h, Vρ), we define(

f |ρ,M[(M, (λ, µ, κ))]
)
(Ω, Z)

:= e−2πiσ(M[Z+λΩ+µ](CΩ+D)−1C) × e2πiσ(M(λΩtλ+2λtZ+(κ+µtλ)))

×ρ(CΩ +D)−1f(M · Ω, (Z + λΩ + µ)(CΩ +D)−1),

where M =
(
A B
C D

)
∈ Sp(g,R), (λ, µ, κ) ∈ H(g,h)

R and (Ω, Z) ∈ Hg,h.

Definition 7.1. Let ρ andM be as above. Let

H
(g,h)
Z := { (λ, µ, κ) ∈ H(g,h)

R |λ, µ ∈ Z(h,g), κ ∈ Z(h,h) }.
Let Γ be a discrete subgroup of Γg of finite index. A Jacobi form of index M
with respect to ρ on Γ is a holomorphic function f ∈ C∞(Hg,h, Vρ) satisfying
the following conditions (A) and (B):

(A) f |ρ,M[γ̃] = f for all γ̃ ∈ ΓJ := Γ nH
(g,h)
Z .
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(B) f has a Fourier expansion of the following form :

f(Ω, Z) =
∑
T≥0

half-integral

∑
R∈Z(g,h)

c(T,R) · e
2πi
λΓ

σ(TΩ) · e2πiσ(RZ)

with some nonzero integer λΓ ∈ Z and c(T,R) 6= 0 only if
(

1
λΓ
T 1

2R
1
2

tR M

)
≥ 0.

If g ≥ 2, the condition (B) is superfluous by the Köcher principle ( cf. [165]
Lemma 1.6). We denote by Jρ,M(Γ) the vector space of all Jacobi forms of
indexM with respect to ρ on Γ. Ziegler(cf. [165] Theorem 1.8 or [29] Theorem
1.1) proves that the vector space Jρ,M(Γ) is finite dimensional. For more results
on Jacobi forms with g > 1 and h > 1, we refer to [112], [149]-[153] and [165].

Definition 7.2. A Jacobi form f ∈ Jρ,M(Γ) is said to be a cusp (or cuspidal)

form if
(

1
λΓ
T 1

2R
1
2

tR M

)
> 0 for any T, R with c(T,R) 6= 0. A Jacobi form

f ∈ Jρ,M(Γ) is said to be singular if it admits a Fourier expansion such that a

Fourier coefficient c(T,R) vanishes unless det
(

1
λΓ
T 1

2R
1
2

tR M

)
= 0.

Example 7.3. Let S ∈ Z(2k,2k) be a symmetric, positive definite, unimodular
even integral matrix and c ∈ Z(2k,h). We define the theta series

(7.2) ϑ
(g)
S,c(Ω, Z) :=

∑
λ∈Z(2k,g)

eπi{σ(SλΩ tλ)+2σ( tcSλ tZ)}, Ω ∈ Hg, Z ∈ C(h,g).

We put M := 1
2

t
cSc. We assume that 2k < g + rank (M). Then it is easy to

see that ϑ(g)
S,c is a singular Jacobi form in Jk,M(Γg)(cf. [165] p.212).

Remark. Singular Jacobi forms are characterized by a special differential
operator or the weight of the associated rational representation of the general
linear group GL(g,C) (cf. [152]).

Now we will make brief historical remarks on Jacobi forms. In 1985, the
names Jacobi group and Jacobi forms got kind of standard by the classic book
[29] by Eichler and Zagier to remind of Jacobi’s “Fundamenta nova theoriae
functionum ellipticorum”, which appeared in 1829 (cf. [68]). Before [29] these
objects appeared more or less explicitly and under different names in the work
of many authors. In 1966 Pyatetski-Shapiro [109] discussed the Fourier-Jacobi
expansion of Siegel modular forms and the field of modular abelian functions.
He gave the dimension of this field in the higher degree. About the same time
Satake [119]-[120] introduced the notion of “groups of Harish-Chandra type”
which are non reductive but still behave well enough so that he could determine
their canonical automorphic factors and kernel functions. Shimura [127]-[128]
gave a new foundation of the theory of complex multiplication of abelian func-
tions using Jacobi theta functions. Kuznetsov [86] constructed functions which
are almost Jacobi forms from ordinary elliptic modular functions. Starting
1981, Berndt [8]-[10] published some papers which studied the field of arith-
metic Jacobi functions, ending up with a proof of Shimura reciprocity law for
the field of these functions with arbitrary level. Furthermore he investigated
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the discrete series for the Jacobi group GJ
g,h and developed the spectral theory

for L2(ΓJ\GJ
g,h) in the case g = h = 1 (cf. [11]-[13]). The connection of Jacobi

forms to modular forms was given by Maass, Andrianov, Kohnen, Shimura,
Eichler and Zagier. This connection is pictured as follows. For k even, we have
the following isomorphisms

M∗
k (Γ2) ∼= Jk,1(Γ1) ∼= M+

k− 1
2
(Γ(1)

0 (4)) ∼= M2k−2(Γ1).

Here M∗
k (Γ2) denotes Maass’s Spezialschar or Maass space and M+

k− 1
2
(Γ(1)

0 (4))
denotes the Kohnen plus space. These spaces shall be described in some more
detail in the next section. For a precise detail, we refer to [93]-[95], [1], [29] and
[76]. In 1982 Tai [134] gave asymptotic dimension formulae for certain spaces
of Jacobi forms for arbitrary g and h = 1 and used these ones to show that
the moduli Ag of principally polarized abelian varieties of dimension g is of
general type for g ≥ 9. Feingold and Frenkel [31] essentially discussed Jacobi
forms in the context of Kac-Moody Lie algebras generalizing the Maass cor-
respondence to higher level. Gritsenko [44] studied Fourier-Jacobi expansions
and a non-commutative Hecke ring in connection with the Jacobi group. Af-
ter 1985 the theory of Jacobi forms for g = h = 1 had been studied more or
less systematically by the Zagier school. A large part of the theory of Jacobi
forms of higher degree was investigated by Kramer [82]-[83], [112], Yang [149]-
[153]and Ziegler [165]. There were several attempts to establish L-functions in
the context of the Jacobi group by Murase [104]-[105]and Sugano [106] using
the so-called “Whittaker-Shintani functions”. Kramer [82]-[83] developed an
arithmetic theory of Jacobi forms of higher degree. Runge [112] discussed some
part of the geometry of Jacobi forms for arbitrary g and h = 1. For a good
survey on some motivation and background for the study of Jacobi forms, we
refer to [14]. The theory of Jacobi forms has been extensively studied by many
people until now and has many applications in other areas like geometry and
physics.

8. Lifting of Elliptic Cusp forms to Siegel Modular Forms

In this section, we present some results about the liftings of elliptic cusp
forms to Siegel modular forms. And we discuss the Duke-Imamoǧlu-Ikeda lift.

In order to discuss these lifts, we need two kinds of L-function or zeta func-
tions associated to Siegel Hecke eigenforms. These zeta functions are defined
by using the Satake parameters of their associated Siegel Hecke eigenforms.

Let F ∈ Mρ(Γg) be a nonzero Hecke eigenform on Hg of type ρ, where ρ is
a finite dimensional irreducible representation of GL(g,C) with highest weight
(k1, · · · , kg). Let αp,0, αp,1, · · · , αp,g be the p-Satake parameters of F at a prime
p. Using these Satake parameters, we define the local spinor zeta function
ZF,p(s) of F at p by

ZF,p(t) = (1− αp,0t)
g∏

r=1

∏
1≤i1<···<ir≤g

(1− αp,0αp,i1 · · ·αp,ir t).
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Now we define the spinor zeta function ZF (s) by

(8.1) ZF (s) :=
∏

p : prime

ZF,p(p−s)−1, Re s� 0.

For example, if g = 1, the spinor zeta function Zf (s) of a Hecke eigenform f is
nothing but the Hecke L-function L(f, s) of f .

Secondly one has the so-called standard zeta function DF (s) of a Hecke
eigenform F in Sρ(Γg) defined by

(8.2) DF (s) :=
∏

p : prime

DF,p(p−s)−1,

where

DF,p(t) = (1− t)
g∏

i=1

(1− αp,it)(1− α−1
p,i t).

For instance, if g = 1, the standard zeta function Df (s) of a Hecke eigenform
f(τ) =

∑∞
n=1 a(n)e2πinτ in Sk(Γ1) has the following

Df (s− k + 1) =
∏

p : prime

(
1 + p−s+k−1

)−1 ·
∞∑

n=1

a(n2)n−s.

For the present time being, we recall the Kohnen plus space and the Maass
space. Let M be a positive definite, half-integral symmetric matrix of degree
h. For a fixed element Ω ∈ Hg, we denote Θ(g)

M,Ω the vector space consisting of
all the functions θ : C(h,g) −→ C satisfying the condition :

(8.3) θ(Z + λΩ + µ) = e−2πi σ(M[λ]Ω+2 tZMλ)θ(Z), Z ∈ C(h,g)

for all λ, µ ∈ Z(h,g). For brevity, we put L := Z(h,g) and LM := L/(2M)L. For
each γ ∈ LM, we define the theta series θγ(Ω, Z) by

θγ(Ω, Z) =
∑
λ∈L

e2πi σ(M[λ+(2M)−1γ]Ω+2 tZM(λ+(2M)−1γ)),

where (Ω, Z) ∈ Hg×C(h,g). Then { θγ(Ω, Z) | γ ∈ LM } forms a basis for Θ(g)
M,Ω.

For any Jacobi form φ(Ω, Z) ∈ Jk,M(Γg), the function φ(Ω, ·) with fixed Ω is an
element of Θ(g)

M,Ω and φ(Ω, Z) can be written as a linear combination of theta
series θγ(Ω, Z) ( γ ∈ LM) :

(8.4) φ(Ω, Z) =
∑

γ∈LM

φγ(Ω)θγ(Ω, Z).

We observe that φ = (φγ(Ω))γ∈LM is a vector valued automorphic form with
respect to a theta multiplier system.

We now consider the case : h = 1, M = Ih = 1, L = Z(1,g) ∼= Zg. We define
the theta series θ(g)(Ω) by

(8.5) θ(g)(Ω) =
∑
λ∈L

e2πi σ(λΩ tλ) = θ0(Ω, 0), Ω ∈ Hg.
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Let

Γ(g)
0 (4) =

{(
A B
C D

)
∈ Γg

∣∣∣ C ≡ 0 (mod 4)
}

be the congruence subgroup of Γg. We define the automorphic factor j :
Γ(g)

0 (4)×Hg −→ C× by

j(γ,Ω) =
θ(g)(γ · Ω)
θ(g)(Ω)

, γ ∈ Γ(g)
0 (4), Ω ∈ Hg.

Thus one obtains the relation

j(γ,Ω)2 = ε(γ) det(CΩ +D), ε(γ)2 = 1,

for any γ =
(
A B
C D

)
∈ Γ(g)

0 (4).

Kohnen [76] introduced the so-called Kohnen plus spaceM+
k− 1

2

(
Γ(g)

0 (4)
)

con-
sisting of holomorphic functions satisfying the following conditions (K1) and
(K2) :

(K1) f(γ · Ω) = j(γ,Ω)2k−1f(Ω) for all γ ∈ Γ(g)
0 (4) ;

(K2) f has the Fourier expansion

f(Ω) =
∑
T≥0

a(T ) e2πi σ(TΩ),

where T runs over the set of semi-positive half-integral symmetric matrices of
degree g such that a(T ) = 0 unless T ≡ −µ tµmod4S∗g (Z) for some µ ∈ Z(g,1).
Here we put

S∗g (Z) =
{
T ∈ R(g,g) | T = tT, σ(TS) ∈ Z for all S = tS ∈ Z(g,g)

}
.

For a Jacobi form φ ∈ Jk,1(Γg), according to Formula (8.4), one has

(8.6) φ(Ω, Z) =
∑

γ∈L/2L

fγ(Ω) θγ(Ω, Z), Ω ∈ Hg, Z ∈ C(h,g).

Now we put
fφ(Ω) :=

∑
γ∈L/2L

fγ(4Ω), Ω ∈ Hg.

Then fφ ∈M+
k− 1

2

(
Γ(g)

0 (4)
)
.

Theorem 8.1. (Kohnen-Zagier (g=1), Ibukiyama (g > 1)) Suppose k is
an even positive integer. Then there exists the isomorphism given by

Jk,1(Γg) ∼= M+
k− 1

2

(
Γ(g)

0 (4)
)
, φ 7→ fφ.

Moreover the isomorphism is compatible with the action of Hecke operators.

For a positive integer k ∈ Z+, H. Maass [93, 94, 95] introduced the so-
called Maass space M∗

k (Γ2) consisting of all Siegel modular forms F (Ω) =∑
g≥0 aF (T ) e2πi σ(TΩ) on H2 of weight k satisfying the following condition

(8.7) aF (T ) =
∑

d|(n,r,m), d>0

dk−1 aF

(
dm
d2

r
2d

r
2d 1

)
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for all T =
(
n r

2
r
2 m

)
≥ 0 with n, r,m ∈ Z. For F ∈Mk(Γ2), we let

F (Ω) =
∑
m≥0

φm(τ, z) e2πimτ ′ , Ω =
(
τ z
z τ ′

)
∈ H2

be the Fourier-Jacobi expansion of F . Then for any nonnegative integer m, we
obtain the linear map

ρm : Mk(Γ2) −→ Jk,m(Γ1), F 7→ φm.

We observe that ρ0 is nothing but the Siegel Φ-operator. Maass [93, 94, 95]
showed that for k even, there exists a nontrivial map V : Jk,1(Γ1) −→Mk(Γ2)
such that ρ1 ◦V is the identity. More precisely, we let φ ∈ Jk,1(Γ1) be a Jacobi
form with Fourier coefficients c(n, r) (n, r ∈ Z, r2 ≤ 4n) and define for any
nonnegative integer m ≥ 0

(8.8)
(
Vmφ

)
(τ, z) =

∑
n,r∈Z, r2≤4mn

 ∑
d|(n,r,m)

dk−1 c
(mn
d2

,
r

d

) e2πi(nτ+rz).

It is easy to see that V1φ = φ and Vmφ ∈ Jk,m(Γ1). We define

(8.9) (V φ)(Ω) =
∑
m≥0

(Vmφ)(τ, z) e2πimτ ′ , Ω =
(
τ z
z τ ′

)
∈ H2.

We denote by Tn (n ∈ Z+) the usual Hecke operators on Mk(Γ2) resp. Sk(Γ2).
For instance, if p is a prime, Tp = T (p) and Tp2 = T1(p2). We denote by
TJ,n (m ∈ Z+) the Hecke operators on Jk,m(Γ1) resp. Jcusp

k,m (Γ1) (cf. [29]).

Theorem 8.2. (Maass [92, 93, 94], Eichler-Zagier [29], Theorem 6.3)
Suppose k is an even positive integer. Then the map φ 7→ V φ gives an isomor-
phism of Jk,m(Γ1) onto M∗

k (Γ2) which sends cusp Jacobi forms to cusp forms
and is compatible with the action of Hecke operators. If p is a prime, one has

Tp ◦ V = V ◦
(
TJ,p + pk−2(p+ 1)

)
and

Tp2 ◦ V = V ◦
(
T 2

J,p + pk−2(p+ 1)TJ,p + p2k−2
)
.

In Summary, we have the following isomorphisms

M∗
k (Γ2) ∼= Jk,m(Γ1) ∼= M+

k− 1
2

(
Γ(1)

0 (4)
) ∼= M2k−2(Γ1),(8.10)

Vφ ←− φ −→ fφ

where the last isomorphism is the Shimura correspondence. All the above
isomorphisms are compatible with the action of Hecke operators.

In 1978, providing some evidences, Kurokawa and Saito conjectured that
there is a one-to-one correspondence between Hecke eigenforms in S2k−2(Γ1)
and Hecke eigenforms inMk(Γ2) satisfying natural identity between their spinor
zeta functions. This was solved mainly by Maass and then completely solved
by Andrianov [1] and Zagier [164].
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Theorem 8.3. Suppose k is an even positive integer and let F ∈ M∗
k (Γ2)

be a nonzero Hecke eigenform. Then there exists a unique normalized Hecke
eigenform f in M2k−2(Γ1) such that

(8.11) ZF (s) = ζ(s− k+) ζ(s− k + 2)L(f, s),

where L(f, s) is the Hecke L-function attached to f .

F is called the Saito-Kurokawa lift of f . Theorem 8.3 implies that ZF (s)
has a pole at s = k if F is an eigenform in M∗

k (Γ2). If F ∈ Sk(Γ2) is a
Hecke eigenform, it was proved by Andrianov [2] that ZF (s) has an analytic
continuation to the whole complex plane which is holomorphic everywhere if
k is odd and is holomorphic except for a possible simple pole at s = k if k is
even. Moreover the global function

Z∗F (s) := (2π)−sΓ(s)Γ(s− k + 2)ZF (s)

is (−1)k-invariant under s 7→ 2k − 2 − s. It was proved that Evdokimov and
Oda that ZF (s) is holomorphic if and only if F is contained in the orthogonal
complement of M∗

k (Γ2) in Mk(Γ2). We remark that Mk(Γ2) = CGk ⊕ S∗k(Γ2),
where Gk is the Siegel Eisenstein series of degree 2 (cf. (6.14)) and S∗k(Γ2) =
Sk(Γ2) ∩M∗

k (Γ2).

Around 1996, Duke and Imamoǧlu [26] conjectured a generalization of The-
orem 7.3. More precisely, they formulated the conjecture that if f is a nor-
malized Hecke eigenform in S2k(Γ1) (k ∈ Z+) and n is a positive integer with
n ≡ k (mod 2), then there exists a Hecke eigenform F in Sk+n(Γ2n) such that
the standard zeta function DF (s) of F equals

(8.12) ζ(s)
2n∑

j=1

L(f, s+ k + n− j),

where L(f, s) is the Hecke L-function of f . Later some evidence for this con-
jecture was given by Breulmann and Kuss [18]. In 1999, Ikeda [66] proved
that the conjecture of Duke and Imamoǧlu is true. Such a Hecke eigenform
F in Sk+n(Γ2n) is called the Duke-Imamoǧlu-Ikeda lift of a normalized Hecke
eigenform f in S2k(Γ1).

Now we describe the work of Tamotsu Ikeda roughly. First we introduce
some notations and recall some definitions. A symmetric square matrix A with
entries aij in the quotient field of an integral domain R will be said to be half
integral if aii ∈ R for all i and 2aij ∈ R for all i, j with i 6= j. We denote by
Sn(R) the set of all such symmetric half integral matrices of degree n. For a ra-
tional, half integral symmetric, non-degenerate matrix T ∈ S2n(Q), we denote
by

DT := (−1)n det(2T )

the discriminant of T . We write

DT = DT,0f
2
T

with DT,0 the corresponding fundamental discriminant and fT ∈ Z+.



294 JAE-HYUN YANG

Fix a prime p. Let T be a non-degenerate matrix in S2n(Zp). Then the local
singular series of T at p is defined as

bp(T ; s) :=
∑
R

νp(R)−s ep(σ(TR)), s ∈ C,

where R runs over all symmetric 2n × 2n matrices with entries in Qp/Zp and
νp(R) is a power of p equal to the product of denominators of elementary
divisors of R. Furthermore, for x ∈ Qp we have put ep(x) = e2πix′ , where x′

denotes the fractional part of x.
As is well known, bp(T ; s) is a product of two polynomials in p−s with

coefficients in Z. More precisely, we put

γp(T ;X) := (1−X)
(
1− ξp(T )pnX

)−1
n∏

j=1

(
1− p2jX2

)
,

where

ξp(T ) := χp

(
(−1)n detT

)
and for a ∈ Q∗p, χp(a) is defined by

χp(a) =


1 if Qp(

√
a) = Qp,

−1 if Qp(
√
a)/Qp is unramified,

0 if Qp(
√
a)/Qp is ramified.

Then we have

bp(T ; s) = γp(T ; p−s)Fp(T ; p−s),

where Fp(T ;X) is a certain polynomial in Z[X] with constant term 1. A
fundamental result of Katsurada [71] states that the Laurent polynomial

F̃p(T ;X) := X−ordpfTFp(T ; p−n−1/2X)

is symmetric, i.e.,

F̃p(T ;X) = F̃p

(
T ;X−1

)
,

where ordp denotes the usual p-adic valuation on Q. If p does not divide fT ,
then Fp(T ;X) = F̃p(T ;X) = 1. We denote by V =

(
F2n

p , q) the quadratic
space over Fp, where q is the quadratic form obtained from the quadratic form
x 7→ T [x] (x ∈ Z2n

p ) by reducing modulo p. We let 〈 , 〉 be the associated
bilinear form on F2n

p given by

〈x, y〉 := q(x+ y)− q(x)− q(y), x, y ∈ F2n
p

and let

R(V ) :=
{
x ∈ F2n

p | 〈x, y〉 = 0 for all y ∈ F2n
p , q(x) = 0

}
be the radical of V . We put sp := sp(T ) = dimR(V ) and denote by W an
orthogonal complementary subspace of R(V ).
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Following [72], one defines a polynomial Hn,p(T ;X) by

Hn,p(T ;X)

=


1 if sp = 0,∏[(sp−1)/2]

j=1

(
1− p2j−1X2

)
, if sp > 0, sp odd,(

1 + λp(T )p(sp−1)/2X
)∏[(sp−1)/2]

j=1

(
1− p2j−1X2

)
, if sp > 0, sp even,

where [x] denotes the Gauss bracket of a real number x, and for sp even we
have put

λp(T ) :=

{
1 if W is a hyperbolic subspace or sp = 2n,
−1 otherwise.

Following [77], for µ ∈ Z, µ ≥ 0, we define ρT (pµ) by∑
µ≥0

ρT (pµ)Xµ :=

{
(1−X2)Hn,p(T ;X) if p | fT ,

1 otherwise.

We extend the function ρT multiplicatively to Z+ by defining∑
a≥1

ρT (a) a−s :=
∏

p | fT

((
1− p−2s

)
Hn,p(T ; p−s)

)
.

Let

D(T ) := GL2n(Z)\
{
G ∈M2n(Z) ∩GL2n(Q) | T [G−1] half integral

}
,

where GL2n(Z) acts by left multiplication. We see easily that D(T ) is finite.
For a ∈ Z+ with a | fT , we define

φ(a;T ) :=
√
a
∑
d2 |a

∑
G∈D(T ), | det(G)|=d

ρT [G−1]

( a
d2

)
.

We observe that φ(a;T ) ∈ Z for all a.
Let f be a normalized Hecke eigenform in S2k(Γ1). For a prime p, we let

λ(p) and αp be the p-th Fourier coefficient and the Satake p-parameter of f
respectively. Therefore one has

1− λ(p)X + p2k−1X2 =
(
1− pk−1/2αpX

)(
1− pk−1/2α−1

p X
)
.

Let
g(τ) =

∑
m≥1, (−1)km≡0,1(mod 4)

c(m) e2πimτ , τ ∈ H1

be a Hecke eigenform in S+
k+ 1

2

(
Γ(1)

0 (4)
)

which corresponds to f under the
Shimura isomorphism (8.10). Now we assume that n is a positive integer sat-
isfying the condition n ≡ k (mod 2). For a rational, half integral symmetric
positive definite matrix T of degree 2n, we define

af (T ) := c(|DT,0|) f
k− 1

2
T

∏
p|fT

F̃p(T ;αp).

We consider the function F (Ω) defined by

F (Ω) =
∑
T>0

af (T ) e2πi σ(TΩ),
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where T runs over all rational, half integral symmetric positive definite matrices
of degree 2n. Ikeda [66] proved that F (Ω) is a cuspidal Siegel-Hecke eigenform
in Sk+n(Γ2n) and the standard zeta function DF (s) of F is given by the formula
(8.12). Therefore we have the mapping

(8.13) Ik,n : S+
k+ 1

2

(
Γ(1)

0 (4)
)
−→ Sk+n(Γ2n)

defined by

g(τ) =
∑

(−1)km≡0,1(mod 4)

c(m)e2πimτ 7−→ F (Ω) =
∑
T>0

A(T ) e2πi σ(TΩ),

where T runs over all rational, half integral symmetric positive definite matrices
of degree 2n and

A(T ) = c(|DT,0|) f
k− 1

2
T

∏
p|fT

F̃p(T ;αp).

The mapping Ik,n is called the Ikeda’s lift map. Kohnen [77] showed the fol-
lowing identity

af (T ) =
∑
a|fT

ak−1φ(a;T ) c(|DT |/a2).

Kohnen and Kojima [78] characterized the image S∗k+n(Γ2n) of the Ikeda’s
lift map Ik,n as follows:

Theorem 8.4. (Kohnen-Kojima [78]) Suppose that n ≡ 0, 1 (mod 4) and
let k ∈ Z+ with n ≡ k (mod 2). Let F ∈ Sk+n(Γ2n) with Fourier coefficient
A(T ). Then the following statements are equivalent:

(a) F ∈ S∗k+n(Γ2n);
(b) there exist complex numbers c(m) (with m ∈ Z+, and (−1)km ≡ 0, 1

(mod 4)) such
that

A(T ) =
∑
a|fT

ak−1φ(a;T ) c(|DT |/a2)

for all T .

They called the image of Ik,n in Sk+n(Γ2n) the Maass space. If n = 1, M∗
k (Γ2)

coincides with the image of Ik,1. Thus this generalizes the original Maass
space. Breulmann and Kuss [18] dealt with the special case of the lift map
I6,2 : S12(Γ1)(∼= S+

13/2) −→ S8(Γ4). In the article [17], starting with the Leech
lattice Λ, the authors constructed a nonzero Siegel cusp form of degree 12 and
weight 12 which is the image of a cusp form ∆ ∈ S12(Γ1) under the Ikeda lift
map I6,6. Here ∆ is the cusp form in S12(Γ1) defined by

∆(τ) = (2π)12 q
∞∏

n=1

(1− qn)24, τ ∈ H1, q = e2πiτ .

It is known that there exist 24 Niemeier lattices of rank 24, say, L1, · · · , L24.
The theta series

θLi(Ω) =
∑

G∈Z(24,12)

e2πi σ(Li[G]Ω), Ω ∈ H12, i = 1, · · · , 24
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generate a subspace V∗ of M12(Γ12). These θLi
(1 ≤ i ≤ 24) are linearly inde-

pendent. It can be seen that the intersection V∗ ∩S12(Γ12) is one dimensional.
This nontrivial cusp form in V∗∩S12(Γ12) up to constant is just the Siegel mod-
ular form constructed by them. Under the assumption n+ r ≡ k (mod 2) with
k, n, r ∈ Z+, using the lift map Ik,n+r : S+

k+ 1
2
−→ Sk+n+r(Γ2n+2r), recently

Ikeda [67] constructed the following map

(8.14) Jk,n,r : S+
k+ 1

2
× Sk+n+r(Γr) −→ Sk+n+r(Γ2n+r)

defined by

Jk,n,r(h,G)(Ω) :=
∫

Γr\Hr

Ik,n+r(h)
((

Ω 0
0 τ

))
Gc(τ)

(
det Im τ

)k+n−1
dτ,

where h ∈ S+
k+ 1

2
, G ∈ Sk+n+r(Γr), Ω ∈ H2n+r, τ ∈ Hr, G

c(τ) = G(−τ) and

(det Im τ)−(r+1)dτ is an invariant volume element (cf. §2 (2.3)). He proved that
the standard zeta function DJk,n,r(h,G)(s) of Jk,n,r(h,G) is equal to

DJk,n,r(h,G)(s) = DG(s)
n∏

j=1

L(f, s+ k + n− j),

where f is the Hecke eigenform in S2k(Γ1) corresponding to h ∈ S+
k+ 1

2
under

the Shimura correspondence.

Question : Can you describe a geometric interpretation of the Duke-Imamoǧlu-
Ikeda lift or the map Jk,n,r ?

9. Holomorphic Differential Forms on Siegel Space

In this section, we describe the relationship between Siegel modular forms
and holomorphic differential forms on the Siegel space. We also discuss the
Hodge bundle. First of all we need to know the theory of toroidal compactifi-
cations of the Siegel space. We refer to [5, 107, 140] for the detail on toroidal
compactifications of the Siegel space.

For a neat arithmetic subgroup Γ, e.g., Γ = Γg(n) with n ≥ 3, we can obtain
a smooth projective toroidal compactification of Γ\Dg. The theory of toroidal
compactifications of bounded symmetric domains was developed by Mumford’s
school (cf. [5] and [107]). We set

Ag := Γg\Hg and A∗g := Γg\H∗g =
⋃

0≤i≤g

Γi\Hi (disjoint union).

I. Satake [117] showed that A∗g is a normal analytic space and W. Baily [6]
proved that A∗g is a projective variety. Let Ãg be a toroidal compactification
of Ag. Then the boundary Ãg −Ag is a divisor with normal crossings and one
has a universal semi-abelian variety over Ãg in the orbifold. We refer to [59]
for the geometry of Ag.

Let θ be the second symmetric power of the standard representation of
GL(g,C). For brevity we set N = 1

2g(g+ 1). For an integer p with 0 ≤ p ≤ N ,



298 JAE-HYUN YANG

we denote by θ[p] the p-th exterior power of θ. For any integer q with 0 ≤ q ≤ N ,
we let Ωq(Hg)Γg be the vector space of all Γg-invariant holomorphic q-forms on
Hg. Then we obtain an isomorphism

Ωq(Hg)Γg −→Mθ[q](Γg).

Theorem 9.1. (Weissauer [143]) For an integer α with 0 ≤ α ≤ g, we let
ρα be the irreducible representation of GL(g,C) with the highest weight

(g + 1, · · · , g + 1, g − α, · · · , g − α)

such that corank (ρα) = α for 1 ≤ α ≤ g. If α = −1, we let ρα = (g+1, · · · , g+
1). Then

Ωq(Hg)Γg =

{
Mρα

(Γg) if q = g(g+1)
2 − α(α+1)

2

0 otherwise.

Remark. If 2α > g, then any f ∈ Mρα
(Γg) is singular (cf. Theorem 5.4).

Thus if q < g(3g+2)
8 , then any Γg-invariant holomorphic q-form on Hg can be

expressed in terms of vector valued theta series with harmonic coefficients. It
can be shown with a suitable modification that the just mentioned statement
holds for a sufficiently small congruence subgroup of Γg.

Thus the natural question is to ask how to determine the Γg-invariant holo-

morphic p-forms on Hg for the nonsingular range
g(3g + 2)

8
≤ p ≤ g(g + 1)

2
.

Weissauer [144] answered the above question for g = 2. For g > 2, the above
question is still open. It is well known that the vector space of vector valued
modular forms of type ρ is finite dimensional. The computation or the estimate
of the dimension of Ωp(Hg)Γg is interesting because its dimension is finite even
though the quotient space Ag is noncompact.

Example 1. Let

(9.1) ϕ =
∑
i≤j

fij(Ω) dωij

be a Γg-invariant holomorphic 1-form on Hg. We put

f(Ω) =
(
fij(Ω)

)
with fij = fji and dΩ = (dωij).

Then f is a matrix valued function on Hg satisfying the condition

f(γ · Ω) = (CΩ +D)f(Ω) t(CΩ +D) for all γ =
(
A B
C D

)
∈ Γg and Ω ∈ Hg.

This implies that f is a Siegel modular form in Mθ(Γg), where θ is the irre-
ducible representation of GL(g,C) on Tg = Symm2(Cg) defined by

θ(h)v = h v th, h ∈ GL(g,C), v ∈ Tg.

We observe that (9.6) can be expressed as ϕ = σ(f dΩ).

Example 2. Let
ω0 = dω11 ∧ dω12 ∧ · · · ∧ dωgg
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be a holomorphic N -form on Hg. If ω = f(Ω)ω0 is Γg-invariant, it is easily
seen that

f(γ · Ω) = det(CΩ +D)g+1f(Ω) for all γ =
(
A B
C D

)
∈ Γg and Ω ∈ Hg.

Thus f ∈Mg+1(Γg). It was shown by Freitag [34] that ω can be extended to a
holomorphic N -form on Ãg if and only if f is a cusp form in Sg+1(Γg). Indeed,
the mapping

Sg+1(Γg) −→ ΩN
(
Ãg

)
= H0

(
Ãg,ΩN

)
, f 7→ f ω0

is an isomorphism. Let ωk = F (Ω)ω⊗k
0 be a Γg-invariant holomorphic form on

Hg of degree kN . Then F ∈Mk(g+1)(Γg).

Example 3. We set

ηab = εab

∧
1≤µ≤ν≤g
(µ,ν) 6=(a,b)

dωµν , 1 ≤ a ≤ b ≤ g,

where the signs εab are determined by the relations εab ηab ∧ dωab = ω0. We
assume that

η∗ =
∑

1≤a≤b≤g

Fab ηab

is a Γg-invariant holomorphic (N − 1)-form on Hg. Then the matrix valued
function F =

(
εab Fab

)
with εab = εba and Fab = Fba is an element of Mτ (Γg),

where τ is the irreducible representation of GL(g,C) on Tg defined by

τ(h)v = (deth)g+1 th−1vh−1, h ∈ GL(g,C), v ∈ Tg.

We will mention the results due to Weissauer [144]. We let Γ be a congruence
subgroup of Γ2. According to Theorem 9.1, Γ-invariant holomorphic forms in
Ω2(H2)Γ are corresponded to modular forms of type (3,1). We note that these
invariant holomorphic 2-forms are contained in the nonsingular range. And if
these modular forms are not cusp forms, they are mapped under the Siegel
Φ-operator to cusp forms of weight 3 with respect to some congruence sub-
group ( dependent on Γ ) of the elliptic modular group. Since there are finitely
many cusps, it is easy to deal with these modular forms in the adelic version.
Observing these facts, he showed that any 2-holomorphic form on Γ\H2 can be
expressed in terms of theta series with harmonic coefficients associated to bi-
nary positive definite quadratic forms. Moreover he showed that H2(Γ\H2,C)
has a pure Hodge structure and that the Tate conjecture holds for a suit-
able compactification of Γ\H2. If g ≥ 3, for a congruence subgroup Γ of Γg it
is difficult to compute the cohomology groups H∗(Γ\Hg,C) because Γ\Hg is
noncompact and highly singular. Therefore in order to study their structure, it
is natural to ask if they have pure Hodge structures or mixed Hodge structures.

We now discuss the Hodge bundle on the Siegel modular variety Ag. For
simplicity we take Γ = Γg(n) with n ≥ 3 instead of Γg. We recall that Γg(n)
is a congruence subgroup of Γg consisting of matrices M ∈ Γg such that M ≡
I2g (mod n). Let

Xg(n) := Γg(n) n Z2g\Hg × Cg
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be a family of abelian varieties of dimension g over Ag(n) := Γg(n)\Hg. We
recall that Γg(n) n Z2g acts on Hg × Cg freely by(

γ, (λ, µ)
)
· (Ω, Z) =

(
γ · Ω, (Z + λΩ + µ)(CΩ +D)−1

)
,

where γ =
(
A B
C D

)
∈ Γg(n), λ, µ ∈ Zg, Ω ∈ Hg and Z ∈ Cg. If we insist on

using Γg, we need to work with orbifolds or stacks to have a universal family

Xg := Xg(n)/Sp(g,Z/nZ)

available. We observe that Γg(n) acts on Hg freely. Therefore we obtain a
vector bundle E = Eg over Ag(n) of rank g

E = Eg := Γg(n)\
(
Hg × Cg

)
.

This bundle E is called the Hodge bundle over Ag(n). The finite group
Sp(g,Z/nZ) acts on E and a Sp(g,Z/nZ)-invariant section of (det E)⊗k with a
positive integer k comes from a Siegel modular form of weight k inMk(Γg). The
canonical line bundle κg(n) ofAg(n) is isomorphic to (det E)⊗(g+1). A holomor-
phic section of κg(n) corresponds to a Siegel modular form in Mg+1(Γg(n)) (cf.
Example 2). We note that the sheaf Ω1

Ag(n) of holomorphic 1-forms on Ag(n)
is isomorphic to Symm2(E). This sheaf can be extended over a toroidal com-
pactification Ãg of Ag to an isomorphism

Ω1
Ãg

(logD) ∼= Symm2(E),

where the boundaryD = Ãg−Ag is the divisor with normal crossings. Similarly
to each finite dimensional representation (ρ, Vρ) of GL(g,C), we may associate
the vector bundle

Eρ := Γg(n)\
(
Hg × Vρ

)
by identifying (Ω, v) with (γ · Ω, ρ(CΩ + D)v), where Ω ∈ Hg, v ∈ Vρ and

γ =
(
A B
C D

)
∈ Γg(n). Obviously Eρ is a holomorphic vector bundle over

Ag(n) of rank dimVρ.

10. Subvarieties of the Siegel Modular Variety

Here we assume that the ground field is the complex number field C.

Definition 9.1. A nonsingular variety X is said to be rational if X is bira-
tional to a projective space Pn(C) for some integer n. A nonsingular variety
X is said to be stably rational if X × Pk(C) is birational to PN (C) for certain
nonnegative integers k and N . A nonsingular variety X is called unirational if
there exists a dominant rational map ϕ : Pn(C) −→ X for a certain positive
integer n, equivalently if the function field C(X) of X can be embedded in a
purely transcendental extension C(z1, · · · , zn) of C.

Remarks 9.2. (1) It is easy to see that the rationality implies the stably
rationality and that the stably rationality implies the unirationality.

(2) If X is a Riemann surface or a complex surface, then the notions of ratio-
nality, stably rationality and unirationality are equivalent one another.



THEORY OF THE SIEGEL MODULAR VARIETY 301

(3) Griffiths and Clemens [21] showed that most of cubic threefolds in P4(C)
are unirational but not rational.

The following natural questions arise :

Question 1. Is a stably rational variety rational ? Indeed, the question was
raised by Bogomolov.

Question 2. Is a general hypersurface X ⊂ Pn+1(C) of degree d ≤ n + 1
unirational ?

Definition 9.3. Let X be a nonsingular variety of dimension n and let KX

be the canonical divisor of X. For each positive integer m ∈ Z+, we define the
m-genus Pm(X) of X by

Pm(X) := dimC H
0(X,O(mKX)).

The number pg(X) := P1(X) is called the geometric genus of X. We let

N(X) :=
{
m ∈ Z+ |Pm(X) ≥ 1

}
.

For the present, we assume that N(X) is nonempty. For each m ∈ N(X), we
let {φ0, · · · , φNm} be a basis of the vector space H0(X,O(mKX)). Then we
have the mapping ΦmKX

: X −→ PNm(C) by

ΦmKX
(z) := (φ0(z) : · · · : φNm(z)), z ∈ X.

We define the Kodaira dimension κ(X) of X by

κ(X) := max {dimC ΦmKX
(X) | m ∈ N(X) } .

If N(X) is empty, we put κ(X) := −∞. Obviously κ(X) ≤ dimC X. A nonsin-
gular varietyX is said to be of general type if κ(X) = dimCX. A singular variety
Y in general is said to be rational, stably rational, unirational or of general type
if any nonsingular model X of Y is rational, stably rational, unirational or of
general type respectively. We define

Pm(Y ) := Pm(X) and κ(Y ) := κ(X).

A variety Y of dimension n is said to be of logarithmic general type if there
exists a smooth compactification Ỹ of Y such that D := Ỹ − Y is a divisor
with normal crossings only and the transcendence degree of the logarithmic
canonical ring

⊕∞m=0H
0(Ỹ , m(KỸ + [D]))

is n + 1, i.e., the logarithmic Kodaira dimension of Y is n. We observe that
the notion of being of logarithmic general type is weaker than that of being of
general type.

Let Ag := Γg\Hg be the Siegel modular variety of degree g, that is, the
moduli space of principally polarized abelian varieties of dimension g. It has
been proved that Ag is of general type for g ≥ 6. At first Freitag [32] proved
this fact when g is a multiple of 24. Tai [134] proved this fact for g ≥ 9 and
Mumford [102] proved this fact for g ≥ 7. Recently Grushevsky and Lehavi [45]
announced that they proved that the Siegel modular variety A6 of genus 6 is of
general type after constructing a series of new effective geometric divisors on



302 JAE-HYUN YANG

Ag. Before 2005 it had been known that Ag is of general type for g ≥ 7. On the
other hand, Ag is known to be unirational for g ≤ 5 : Donagi [25] for g = 5,
Clemens [20] for g = 4 and classical for g ≤ 3. For g = 3, using the moduli
theory of curves, Riemann [111], Weber [142] and Frobenius [36] showed that
A3(2) := Γ3(2)\H3 is a rational variety and moreover gave 6 generators of the
modular function field K(Γ3(2)) written explicitly in terms of derivatives of
odd theta functions at the origin. So A3 is a unirational variety with a Galois
covering of a rational variety of degree [Γ3 : Γ3(2)] = 1, 451, 520. Here Γ3(2)
denotes the principal congruence subgroup of Γ3 of level 2. Furthermore it was
shown that A3 is stably rational(cf. [80], [16]). For a positive integer k, we
let Γg(k) be the principal congruence subgroup of Γg of level k. Let Ag(k)
be the moduli space of abelian varieties of dimension g with k-level structure.
It is classically known that Ag(k) is of logarithmic general type for k ≥ 3 (cf.
[101]). Wang [141] proved that A2(k) is of general type for k ≥ 4. On the other
hand, van der Geer [37] showed that A2(3) is rational. The remaining unsolved
problems are summarized as follows :

Problem 1. Is A3 rational ?

Problem 2. Are A4, A5 stably rational or rational ?

Problem 3. What type of varieties are Ag(k) for g ≥ 3 and k ≥ 2 ?

We already mentioned that Ag is of general type if g ≥ 6. It is natural to ask
if the subvarieties ofAg (g ≥ 6) are of general type, in particular the subvarieties
of Ag of codimension one. Freitag [35] showed that there exists a certain bound
g0 such that for g ≥ g0, each irreducible subvariety of Ag of codimension one
is of general type. Weissauer [145] proved that every irreducible divisor of Ag

is of general type for g ≥ 10. Moreover he proved that every subvariety of
codimension ≤ g − 13 in Ag is of general type for g ≥ 13. We observe that the
smallest known codimension for which there exist subvarieties of Ag for large
g which are not of general type is g − 1. A1 × Ag−1 is a subvariety of Ag of
codimension g − 1 which is not of general type.

Remark. Let Mg be the coarse moduli space of curves of genus g over C.
ThenMg is an analytic subvariety of Ag of dimension 3g− 3. It is known that
Mg is unirational for g ≤ 10. So the Kodaira dimension κ(Mg) of Mg is −∞
for g ≤ 10. Harris and Mumford [48] proved thatMg is of general type for odd
g with g ≥ 25 and κ(M23) ≥ 0.

11. Proportionality Theorem

In this section we describe the proportionality theorem for the Siegel modular
variety following the work of Mumford [101]. Historically F. Hirzebruch [55]
first described a beautiful proportionality theorem for the case of a compact
locally symmetric variety in 1956. We shall state his proportionality theorem
roughly. Let D be a bounded symmetric domain and let Γ be a discrete torsion-
free co-compact group of automorphisms of D. We assume that the quotient
space XΓ := Γ\D is a compact locally symmetric variety. We denote by Ď the
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compact dual of D. Hirzebruch [55] proved that the Chern numbers of XΓ are
proportional to the Chern numbers of Ď, the constant of proportionality being
the volume of XΓ in a natural metric. Mumford [101] generalized Hirzebruch’s
proportionality theorem to the case of a noncompact arithmetic variety.

Before we describe the proportionality theorem for the Siegel modular vari-
ety, first of all we review the compact dual of the Siegel upper half plane Hg.
We note that Hg is biholomorphic to the generalized unit disk Dg of degree
g through the Cayley transform (2.7). We suppose that Λ = (Z2g, 〈 , 〉) is a
symplectic lattice with a symplectic form 〈 , 〉. We extend scalars of the lattice
Λ to C. Let

Yg :=
{
L ⊂ C2g | dimC L = g, 〈x, y〉 = 0 for all x, y ∈ L

}
be the complex Lagrangian Grassmannian variety parameterizing totally
isotropic subspaces of complex dimension g. For the present time being, for
brevity, we put G = Sp(g,R) and K = U(g). The complexification GC =
Sp(g,C) of G acts on Yg transitively. If H is the isotropy subgroup of GC fix-
ing the first summand Cg, we can identify Yg with the compact homogeneous
space GC/H. We let

Y+
g :=

{
L ∈ Yg | − i〈x, x̄〉 > 0 for all x(6= 0) ∈ L

}
be an open subset of Yg. We see that G acts on Y+

g transitively. It can be
shown that Y+

g is biholomorphic to G/K ∼= Hg. A basis of a lattice L ∈ Y+
g

is given by a unique 2g × g matrix t(−Ig Ω) with Ω ∈ Hg. Therefore we can
identify L with Ω in Hg. In this way, we embed Hg into Yg as an open subset
of Yg. The complex projective variety Yg is called the compact dual of Hg.

Let Γ be an arithmetic subgroup of Γg. Let E0 be a G-equivariant holo-
morphic vector bundle over Hg = G/K of rank n. Then E0 is defined by
the representation τ : K −→ GL(n,C). That is, E0

∼= G ×K Cn is a homo-
geneous vector bundle over G/K. We naturally obtain a holomorphic vector
bundle E over Ag,Γ := Γ\G/K. E is often called an automorphic or arithmetic
vector bundle over Ag,Γ. Since K is compact, E0 carries a G-equivariant Her-
mitian metric h0 which induces a Hermitian metric h on E. According to
Main Theorem in [101], E admits a unique extension Ẽ to a smooth toroidal
compactification Ãg,Γ of Ag,Γ such that h is a singular Hermitian metric good
on Ãg,Γ. For the precise definition of a good metric on Ag,Γ we refer to [101,
p. 242]. According to Hirzebruch-Mumford’s Proportionality Theorem (cf. [101,
p. 262]), there is a natural metric on G/K = Hg such that the Chern numbers
satisfy the following relation

(11.1) cα
(
Ẽ
)

= (−1)
1
2 g(g+1) vol (Γ\Hg) cα

(
Ě0

)
for all α = (α1, · · · , αn) with nonegative integers αi (1 ≤ i ≤ n) and

∑n
i=1 αi =

1
2g(g + 1), where Ě0 is the GC-equivariant holomorphic vector bundle on the
compact dual Yg of Hg defined by a certain representation of the stabilizer
StabGC(e) of a point e in Yg. Here vol (Γ\Hg) is the volume of Γ\Hg that can
be computed (cf. [131]).
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Remark 11.1. Goresky and Pardon [41] investigated Chern numbers of an au-
tomorphic vector bundle over the Baily-Borel compactification X of a Shimura
variety X. It is known that X is usually a highly singular complex projective
variety. They also described the close relationship between the topology of X
and the characteristic classes of the unique extension T̃X of the tangent bundle
TX of X to a smooth toroidal compactification X̃ of X.

12. Motives and Siegel Modular Forms

Assuming the existence of the hypothetical motive M(f) attached to a Siegel
modular form f of degree g, H. Yoshida [161] proved an interesting fact that
M(f) has at most g + 1 period invariants. I shall describe his results in some
detail following his papers [160, 161, 163].

First of all we start with listing major historical events concerning critical
values of zeta functions.

Around 1670, Gottfried W. Leibniz (1646-1716) found the following identity
∞∑

k=0

= 1− 1
3

+
1
5
− 1

7
+ · · · = π

4
.

In 1735, Leonhard Euler (1707-1783) discovered the following interesting iden-
tity

ζ(2) =
∞∑

n=1

1
n2

=
π2

6

experimentally and also in 1742 showed the following fact

ζ(2n)
π2n

∈ Q, n = 1, 2, 3, · · · ∈ Z+.

In 1899, Adolf Hurwitz (1859-1919) showed the following fact∑
z

z−4n/$4n ∈ Q, n = 1, 2, 3, · · · ∈ Z+,

where z extends over all nonzero Gaussian integers and

$ = 2
∫ 1

0

dx√
1− x4

.

In 1959, Goro Shimura (1930- ) proved that

L(n,∆)
(2πi)nc±(∆)

∈ Q, 1 5 n 5 11, ±1 = (−1)n,

where

∆(τ) =
∞∑

n=1

τ(n) qn = q

∞∏
n=1

(1− qn)24, q = exp(2πiτ)

is the cusp form of weight 12 with respect to SL(2,Z) and c±(∆) ∈ R×. Here

L(s,∆) =
∞∑

n=1

τ(n)
ns
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is the L-function of ∆(τ) and τ(n) is the so-called Ramanujan tau function
which has the following property

|τ(p)| ≤ 2 p11/2 for all primes p.

The above property was proved by Pierre Deligne (1944- ) in 1974. For in-
stance, τ(2) = −24, τ(3) = 252, τ(5) = 4830, τ(7) = −16744, τ(11) =
534612, τ(13) = −577738.

In 1977, Shimura [130] proved in a similar way that for a Hecke eigenform
f ∈ Sk(Γ0(N), ψ) and σ ∈ Aut(C),

(
L(n, f)

(2πi)nc±(f)

)σ

=
L(n, fσ)

(2πi)nc±(fσ)
, 1 5 n 5 k − 1, ±1 = (−1)n,

where c±(fσ) ∈ C×. By these results, it was expected that the critical values

of zeta functions are related to periods of integrals. Here the notion of critical
values, which is generally accepted now, can be defined as follows. Suppose that
a zeta function Z(s) multiplied by its gamma factor G(s) satisfies a functional
equation of standard type under the symmetry s −→ v − s. Then Z(n), n ∈ Z
is a critical value of Z(s) if both of G(n) and G(v − n) are finite.

In 1979, Pierre Deligne [24] published a general conjecture which gives a
prediction on critical values of the L-function of a motive. For a nice concise
exposition of the theory of motives, we refer the reader to a paper of Jannsen
[69]. For more comprehensive information, we refer to [70].

Let E be an algebraic number field with finite degree l = [E : Q]. Let JE

be the set of all isomorphisms of E into C. We put R = E ⊗Q C. Let M be
a motive over Q with coefficients in E. Roughly speaking motives arise as
direct summands of the cohomology of a smooth projective algebraic variety
defined over Q. Naively they may be defined by a collection of realizations
satisfying certain axioms. A motive M has at least three realizations : the
Betti realization, the de Rham realization and the λ-adic realization.

First we let HB(M) be the Betti realization of M . Then HB(M) is a free
module over E of rank d := d(M). We put HB(M)C := HB(M)⊗Q C. We have
the involution F∞ acting on HB(M)C E-linearly. Therefore we obtain the the
eigenspace decomposition

(12.1) HB(M)C = H+
B (M)⊕H−

B (M),

where H+
B (M) (resp. H−

B (M)) denotes the (+1)-eigenspace (resp. the (−1)-
eigenspace) of HB(M). We let d+ (resp. d−) be the dimension H+

B (M) (resp.
H−

B (M)). Furthermore HB(M)C has the Hodge decomposition into C-vector
spaces :

(12.2) HB(M)C =
⊕

p,q∈Z
Hp,q(M),

whereHp,q(M) is a freeR-module. A motiveM is said to be of pure weight w :=
w(M) if Hp,q(M) = {0} whenever p + q 6= w. From now on we shall assume
that M is of pure weight.
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Secondly we let HDR(M) be the de Rham realization of M that is a free
module over E of rank d. Let

(12.3) HDR(M) = F i1 % F i2 % · · · % F im % F im+1 =
{
0
}

be a decreasing Hodge filtration so that there are no different filtrations between
successive members. The choice of members iν may not be unique for F iν . For
the sake of simplicity, we assume that iν is chosen for 1 ≤ ν ≤ m so that it is
the maxium number. We put

sν = rank Hiν ,w−iν (M), 1 ≤ ν ≤ m,

where rank means the rank as a free R-module. Let

I : HB(M)C −→ HDR(M)C = HDR(M)⊗E C

be the comparison isomorphism which satisfies the conditions

(12.4) I

⊕
p′≥p

Hp′,q(M)

 = F p ⊗Q C.

According to (12.4), we get

sν = dimE F iν−dimE F iν+1 , dimE F iν = sν +sν+1+ · · ·+sm, 1 ≤ ν ≤ m.

We choose a basis
{
w1, · · · , wd

}
of HDR(M) over E so that{

ws1+s2+···+sν−1+1, · · · , wd

}
is a basis of F iν for 1 ≤ ν ≤ m. We observe

that

(12.5) d = s1 + s2 + · · ·+ sm all sν > 0 with 1 ≤ ν ≤ m.

We are in a position to describe the fundamental periods of M that Yoshida in-
troduced. Let

{
v+
1 , v

+
2 , · · · , v

+
d+

} (
resp.

{
v−1 , v

−
2 , · · · , v

−
d−

} )
be a basis ofH+

B (M)
(resp. H−

B (M)) over E. Writing

(12.6) I(v±j ) =
d∑

i=1

x±ijwi, x±ij ∈ R, 1 ≤ j ≤ d±,

we obtain a matrix X+ =
(
x+

ij

)
∈ R(d,d+) and a matrix X− =

(
x−ij
)
∈ R(d,d−).

We recall that R(m,n) denotes the set of all m× n matrices with entries in R.
Let PM be the lower parabolic subgroup of GL(d) which corresponds to the
partition (12.5). Let PM (E) be the group of E-rational points of PM . Then
the coset of X+ (resp.X−) in

PM (E)\R(d,d+)/GL(d+, E)
(
resp. PM (E)\R(d,d−)/GL(d−, E)

)
is independent of the choice of a basis. We set XM = (X+, X−) ∈ R(d,d). Then
it is easily seen that the coset of XM in

PM (E)\R(d,d)/
(
GL(d+, E)×GL(d−, E)

)
is independent of the choice of a basis, i.e., well defined. A d × d matrix
XM = (X+, X−) is called a period matrix of M .
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For an m-tuple (a1, · · · , am) ∈ Zm of integers, we define a character λ1 of
PM by

λ1



P1 0 . . . 0
∗ P2 . . . 0

∗ ∗
. . .

...
∗ ∗ ∗ Pm


 =

m∏
j=1

det(Pj)aj , Pj ∈ GL(sj), 1 ≤ j ≤ m.

For a pair (k+, k−) of integers, we define a character λ2 of GL(d+)×GL(d−)
by

λ2

((
A 0
0 B

))
= (detA)k+

(detB)k− , A ∈ GL(d+), B ∈ GL(d−).

A polynomial f on R(d,d) rational over Q is said to be of the type{
(a1, · · · , am); (k+, k−)

}
or of the type (λ1, λ2) if f satisfies the following con-

dition

(12.7) f(pxq) = λ1(p)λ2(q)f(x) for all p ∈ PM , q ∈ GL(d+)×GL(d−).

We now assume that f is a nonzero polynomial on R(d,d) of the type{
(a1, · · · , am); (k+, k−)

}
. Let XM = (X+, X−) be a period matrix of a motive

M as before. Then it is clear that f(XM ) is uniquely determined up to mul-
tiplication by elements in E×. We call f(XM ) a period invariant of M of the
type

{
(a1, · · · , am); (k+, k−)

}
. Hereafter we understand the equality between

period invariants mod E×.
We now consider the following special polynomials of the type (λ1, λ2) :

I. Let f(x) = det(x) for x ∈ R(d,d).
It is easily seen that f(x) is of the type

{
(1, 1, · · · , 1); (1, 1)

}
. Then f(XM )

is nothing but Deligne’s period δ(M).
II. Let f+(x) be the determinant of the upper left d+ × d+-submatrix of x ∈
R(d,d). It is easily checked that f+(x) is of the type

{
(

p+︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0); (1, 0)

}
,

where p+ is a positive integer such that s1 + s2 + · · ·+ sp+ = d+. We note that
f+(XM ) is Deligne’s period c+(M).
III. Let f−(x) be the determinant of the upper right d− × d−-submatrix of x.
Then f−(x) is of the type

{
(

p−︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0); (0, 1)

}
and f−(XM ) is Deligne’s period c−(M). Here p− is a positive integer such that
s1 + s2 + · · ·+ sp− = d−.

Either one of the above conditions is equivalent to that F∓(M), hence also
c±(M) can be defined (cf. [23], §1, [160], §2). We have F∓(M) = F ip±+1(M);
F±(M) can be defined if M has a critical value. Let P = P(M) denote the
set of integers p such that s1 + s2 + · · ·+ sp < min(d+, d−). Yoshida (cf. [161],
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Theorem 3) showed that for every p ∈ P, there exists a non-zero polynomial
fp of the type

{
(

p︷ ︸︸ ︷
2, . . . , 2,

m−2p︷ ︸︸ ︷
1, . . . , 1,

p︷ ︸︸ ︷
0, . . . , 0); (1, 1)

}
and that every polynomial satisfying (12.7) can be written uniquely as a mono-
mial of det(x), f+(x), f−(x), fp(x), p ∈ P. We put cp(M) = fp(XM ). We
call δ(M), c±(M), cp(M), p ∈ P the fundamental periods of M . Therefore
any period invariant of M can be written as a monomial of the fundamental
periods. Moreover Yoshida showed that if a motive M is constructed from
motives M1, · · · ,Mt of pure weight by standard algebraic operations then the
fundamental periods of M can be written as monomials of the fundamental pe-
riods of M1, · · · ,Mt. He proved that a motive M has at most min(d+, d−) + 2
fundamental periods including Deligne’s periods δ(M) and c±(M).

Thirdly we let Hλ(M) be the λ-adic realization of M . We note that Hλ(M)
is a free module over Eλ of rank d. We have a continuous λ-adic representation
of the absolute Galois group GQ = Gal

(
Q/Q

)
on Hλ(M) for each prime λ.

Also there is an isomorphism Iλ : HB(M)⊗E Eλ −→ Hλ(M) which transforms
the involution F∞ into the complex conjugation.

We recall that an integer s = n is said to be critical for a motive M if
both the infinite Euler factors L∞(M, s) and L∞(M̌, s) are holomorphic at
s = n. Here L(M, s) denotes the complex L-function attached to M and M̌
denotes the dual motive of M . Such values L(M,n) are called critical values
of L(M, s). Deligne proposed the following.
Conjecture (Deligne [23]). Let M be a motive of pure weight and L(M, s)
the L-function of M . Then for critical values L(M,n), one has

L(M,n)
(2πi)d± c±(M)

∈ E, d± := d±(M), ±1 = (−1)n.

Indeed Deligne showed that c±(M) ∈ R× and Yoshida showed that other period
invariants are elements of R×.
Remark 12.1. The Hodge decomposition (12.2) determines the gamma factors
of the conjectural functional equation of L(M, s). Conversely the gamma factor
of the functional equation of L(M, s) determines the Hodge decomposition if
M is of pure weight.

Let f ∈ Sk(Γg) be a nonzero Hecke eigenform on Hg. Let Lst(s, f) and
Lsp(s, f) be the standard zeta function and the spinor zeta function of f re-
spectively. For the sake of simplicity we use the notations Lst(s, f) and Lsp(s, f)
instead of Df (s) and Zf (s) (cf. §8) in this section. We put w = kg− 1

2g(g+1).
We have a normalized Petersson inner product 〈 , 〉 on Sk(Γg) given by

〈F, F 〉 = vol
(
Γg\Hg

)−1
∫

Γg\Hg

|f(Ω)|2
(
detY

)k−g−1[dX][dY ], F ∈ Sk(Γg),

where Ω = X + iY ∈ Hg with real X = (xµν), Y = (yµν), [dX] =
∧

µ≤ν dxµν

and [dY ] =
∧

µ≤ν dyµν .

We assume the following (A1)-(A6) :
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(A1) The Fourier coefficients of f are contained in a totally real algebraic
number field E.
(A2) There exist motives Mst(f) and Msp(f) over Q with coefficients in E
satisfying the conditions

L
(
Mst(f), s) =

(
Lst(s, fσ)

)
σ∈JE

and L
(
Msp(f), s) =

(
Lsp(s, fσ)

)
σ∈JE

.

(A3) Both Mst(f) and Msp(f) are of pure weight.
(A4) We assume

2g+1∧
Mst(f) ∼= T (0),

HB(Mst(f))⊗Q C = H0,0(Mst(f))
g⊕

i=1

(
H−k+i,k−i(Mst(f))⊕Hk−i,−k+i(Mst(f))

)
.

We also assume that the involution F∞ acts on H0,0(Mst(f)) by (−1)g.
(A5) We assume

2g∧
Msp(f) ∼= T (2g−1w),

HB(Msp(f))⊗Q C =
⊕
p,q

Hp,q(Msp(f)),

p = (k − i1) + (k − i2) + · · ·+ (k − ir), q = (k − j1) + (k − j2) + · · ·+ (k − js),
r + s = g, 1 ≤ i1 < · · · < ir ≤ g, 1 ≤ j1 < · · · < js ≤ g,

{i1, · · · , ir} ∪ {j1, · · · , js} = {1, 2, . . . , g},
including the cases r = 0 or s = 0.
(A6) If w = kg− 1

2g(g+ 1) is even, then the eigenvalues +1 and −1 of F∞ on
Hp,p(Msp(f)) occur with the equal multiplicities.

Let JE = {σ1, σ2, . . . , σl}, l = [E : Q] and write x ∈ R ∼= CJE as x =
(x(1), x(2), · · · , x(l)), x(i) ∈ C so that x(i) = xσi for x ∈ E. Yoshida showed
that when k > 2g, assuming Deligne’s conjecture, one has

c±(Mst(f)) = πkg
(
〈fσ, fσ〉

)
σ∈JE

.

He proved the following interesting result (cf. Yoshida [161], Theorem 14).

Theorem 12.1. Let the notation be the same as above. We assume that two
motives over Q having the same L-function are isomorphic (Tate’s conjecture).
Then there exist p1, p2, · · · , pr ∈ C×, 1 ≤ r ≤ g + 1 such that for any
fundamental period c ∈ R× of Mst(f) or Msp(f), we have

c(1) = απA pa1
1 p

a2
2 · · · par

r

with α ∈ Q× and non-negative integers A, ai, 1 ≤ i ≤ r.

Remark 12.2. It is widely believed that the zeta function of the Siegel modular
variety Ag := Γg\Hg can be expressed using the spinor zeta functions of (not
necessarily holomorphic) Siegel modular forms:

ζ
(
s,Ag

)
;
∏
f

Lsp(s, f).
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Yoshida proposed the following conjecture.
Conjecture (Yoshida [161]). If one of two motives Mst(f) and Msp(f) is
not of pure weight, then the associated automorphic representation to f is not
tempered. Furthermore f can be obtained as a lifting from lower degree forms.
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[94] H. Maass, Über eine Spezialschar von Modulformen zweiten Grades II, Invent. Math.
53 (1979), 249–253.
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